BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 10358120)

  • 21. Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons.
    Williams SR; Stuart GJ
    J Neurosci; 2000 Feb; 20(4):1307-17. PubMed ID: 10662820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of N- and P/Q-type calcium channels by postsynaptic GABAB receptor activation in rat supraoptic neurones.
    Harayama N; Shibuya I; Tanaka K; Kabashima N; Ueta Y; Yamashita H
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):371-83. PubMed ID: 9575287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones.
    McCormick DA; Pape HC
    J Physiol; 1990 Dec; 431():291-318. PubMed ID: 1712843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuromedin C decreases potassium conductance and increases a non-specific conductance in rat suprachiasmatic neurones in brain slices in vitro.
    Reynolds T; Pinnock RD
    Brain Res; 1997 Mar; 750(1-2):67-80. PubMed ID: 9098531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 5-HT modulates multiple conductances in immature rat rostral ventrolateral medulla neurones in vitro.
    Hwang LL; Dun NJ
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):217-28. PubMed ID: 10226161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane bistability in thalamic reticular neurons during spindle oscillations.
    Fuentealba P; Timofeev I; Bazhenov M; Sejnowski TJ; Steriade M
    J Neurophysiol; 2005 Jan; 93(1):294-304. PubMed ID: 15331618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ionic currents in cultured rat hypothalamic neurones.
    Müller TH; Misgeld U; Swandulla D
    J Physiol; 1992 May; 450():341-62. PubMed ID: 1331425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium currents and calcium-dependent potassium currents in mammalian medullary respiratory neurones.
    Richter DW; Champagnat J; Jacquin T; Benacka R
    J Physiol; 1993 Oct; 470():23-33. PubMed ID: 8308727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation by different GABAB receptor types of voltage-activated calcium currents in rat thalamocortical neurones.
    Guyon A; Leresche N
    J Physiol; 1995 May; 485 ( Pt 1)(Pt 1):29-42. PubMed ID: 7658381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developmental changes in the expression of low-voltage-activated Ca2+ channels in rat visual cortical neurones.
    Tarasenko AN; Isaev DS; Eremin AV; Kostyuk PG
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):385-94. PubMed ID: 9575288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inward rectifier potassium current I
    Amarillo Y; Tissone AI; Mato G; Nadal MS
    J Neurophysiol; 2018 Jun; 119(6):2358-2372. PubMed ID: 29561202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oscillatory bursting of phasically firing rat supraoptic neurones in low-Ca2+ medium: Na+ influx, cytosolic Ca2+ and gap junctions.
    Li Z; Hatton GI
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):379-94. PubMed ID: 8910223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium window currents, periodic forcing, and chaos: understanding single neuron response with a discontinuous one-dimensional map.
    Laudanski J; Sumner C; Coombes S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011924. PubMed ID: 20866665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo.
    Crunelli V; Lörincz ML; Errington AC; Hughes SW
    Pflugers Arch; 2012 Jan; 463(1):73-88. PubMed ID: 21892727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1993 Jul; 70(1):144-57. PubMed ID: 7689647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patch-clamp analysis of the mechanism of PACAP-induced excitation in rat supraoptic neurones.
    Shibuya I; Kabashima N; Tanaka K; Setiadji VS; Noguchi J; Harayama N; Ueta Y; Yamashita H
    J Neuroendocrinol; 1998 Oct; 10(10):759-68. PubMed ID: 9792327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of N-, Q- and R-type Ca2+ channels in feedback inhibition of ACh release from rat basal forebrain neurones.
    Allen TG
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):93-107. PubMed ID: 9925881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones.
    Akaike N; Kostyuk PG; Osipchuk YV
    J Physiol; 1989 May; 412():181-95. PubMed ID: 2557425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones.
    Kano M; Garaschuk O; Verkhratsky A; Konnerth A
    J Physiol; 1995 Aug; 487(1):1-16. PubMed ID: 7473240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.