BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 10358123)

  • 21. Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products.
    Caremani M; Melli L; Dolfi M; Lombardi V; Linari M
    J Physiol; 2015 Aug; 593(15):3313-32. PubMed ID: 26041599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemo-mechanical energy transduction in relation to myosin isoform composition in skeletal muscle fibres of the rat.
    Reggiani C; Potma EJ; Bottinelli R; Canepari M; Pellegrino MA; Stienen GJ
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):449-60. PubMed ID: 9263923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peak power output is maintained in rabbit psoas and rat soleus single muscle fibers when CTP replaces ATP.
    Wahr PA; Metzger JM
    J Appl Physiol (1985); 1998 Jul; 85(1):76-83. PubMed ID: 9655758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of muscle contraction and actomyosin NTP hydrolysis from rabbit using a series of metal-nucleotide substrates.
    Burton K; White H; Sleep J
    J Physiol; 2005 Mar; 563(Pt 3):689-711. PubMed ID: 15611022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of ATP in the regulation of intracellular Ca2+ release in single fibres of mouse skeletal muscle.
    Allen DG; Lännergren J; Westerblad H
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):587-600. PubMed ID: 9051572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A birefringence study of changes in myosin orientation during relaxation of skinned muscle fibers induced by photolytic ATP release.
    Peckham M; Ferenczi MA; Irving M
    Biophys J; 1994 Sep; 67(3):1141-8. PubMed ID: 7811926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of caged adenine nucleotides and caged phosphate in intact skeletal muscle fibres of the mouse.
    Allen DG; Lännergren J; Westerblad H
    Acta Physiol Scand; 1999 Aug; 166(4):341-7. PubMed ID: 10610612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thin filament cooperativity as a major determinant of shortening velocity in skeletal muscle fibers.
    Iwamoto H
    Biophys J; 1998 Mar; 74(3):1452-64. PubMed ID: 9512041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of ionic strength on the time course of force development and phosphate release by dogfish muscle fibres.
    West TG; Ferenczi MA; Woledge RC; Curtin NA
    J Physiol; 2005 Sep; 567(Pt 3):989-1000. PubMed ID: 16037082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres.
    Ranatunga KW; Coupland ME; Pinniger GJ; Roots H; Offer GW
    J Physiol; 2007 Nov; 585(Pt 1):263-77. PubMed ID: 17916609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres.
    Vandenboom R; Claflin DR; Julian FJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):171-80. PubMed ID: 9679172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation between isoform composition of the 17 kDa myosin light chain and maximal shortening velocity in smooth muscle.
    Malmqvist U; Arner A
    Pflugers Arch; 1991 Jul; 418(6):523-30. PubMed ID: 1834987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres.
    Dantzig JA; Goldman YE; Millar NC; Lacktis J; Homsher E
    J Physiol; 1992; 451():247-78. PubMed ID: 1403812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of nucleotide release kinetics in single skeletal muscle myofibrils during isometric and isovelocity contractions using fluorescence microscopy.
    Chaen S; Shirakawa I; Bagshaw CR; Sugi H
    Biophys J; 1997 Oct; 73(4):2033-42. PubMed ID: 9336198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compliance of thin filaments in skinned fibers of rabbit skeletal muscle.
    Higuchi H; Yanagida T; Goldman YE
    Biophys J; 1995 Sep; 69(3):1000-10. PubMed ID: 8519955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Initiation of active contraction by photogeneration of adenosine-5'-triphosphate in rabbit psoas muscle fibres.
    Goldman YE; Hibberd MG; Trentham DR
    J Physiol; 1984 Sep; 354():605-24. PubMed ID: 6481646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BDM compared with P(i) and low Ca2+ in the cross-bridge reaction initiated by flash photolysis of caged ATP.
    Kagawa K; Horiuti K; Yamada K
    Biophys J; 1995 Dec; 69(6):2590-600. PubMed ID: 8599666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain.
    Berger CL; Craik JS; Trentham DR; Corrie JE; Goldman YE
    Biophys J; 1996 Dec; 71(6):3330-43. PubMed ID: 8968602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.