BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 10358123)

  • 61. Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5'-triphosphate.
    Goldman YE; Hibberd MG; Trentham DR
    J Physiol; 1984 Sep; 354():577-604. PubMed ID: 6481645
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Unloaded shortening of skinned mammalian skeletal muscle fibres: effects of the experimental approach and passive force.
    Galler S; Hilber K
    J Muscle Res Cell Motil; 1994 Aug; 15(4):400-12. PubMed ID: 7806634
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Storage and release of mechanical energy by contracting frog muscle fibres.
    Cavagna GA; Heglund NC; Harry JD; Mantovani M
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):689-708. PubMed ID: 7707236
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Overextended sarcomeres regain filament overlap following stretch.
    Panchangam A; Herzog W
    J Biomech; 2012 Sep; 45(14):2387-91. PubMed ID: 22858317
    [TBL] [Abstract][Full Text] [Related]  

  • 65. ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis.
    Stienen GJ; Zaremba R; Elzinga G
    J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):109-22. PubMed ID: 7730976
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Kinetics of regeneration of cross-bridge power stroke in shortening muscle.
    Piazzesi G; Linari M; Lombardi V
    Adv Exp Med Biol; 1993; 332():691-700; discussion 700-1. PubMed ID: 8109379
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanisms underlying phosphate-induced failure of Ca2+ release in single skinned skeletal muscle fibres of the rat.
    Posterino GS; Fryer MW
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):97-108. PubMed ID: 9729620
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function.
    Edman KA; MÃ¥nsson A; Caputo C
    J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):141-56. PubMed ID: 9288682
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.
    Shirakawa I; Chaen S; Bagshaw CR; Sugi H
    Biophys J; 2000 Feb; 78(2):918-26. PubMed ID: 10653804
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparison of energy output during ramp and staircase shortening in frog muscle fibres.
    Linari M; Woledge RC
    J Physiol; 1995 Sep; 487 ( Pt 3)(Pt 3):699-710. PubMed ID: 8544132
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mechanical study of rat soleus muscle using caged ATP and X-ray diffraction: high ADP affinity of slow cross-bridges.
    Horiuti K; Yagi N; Takemori S
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):433-47. PubMed ID: 9263922
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats.
    Macpherson PC; Dennis RG; Faulkner JA
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):523-33. PubMed ID: 9147335
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mechanical transients initiated by photolysis of caged ATP within fibers of insect fibrillar flight muscle.
    Yamakawa M; Goldman YE
    J Gen Physiol; 1991 Oct; 98(4):657-79. PubMed ID: 1960528
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Depletion of phosphate in active muscle fibers probes actomyosin states within the powerstroke.
    Pate E; Franks-Skiba K; Cooke R
    Biophys J; 1998 Jan; 74(1):369-80. PubMed ID: 9449337
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Force generation and work production by covalently cross-linked actin-myosin cross-bridges in rabbit muscle fibers.
    Bershitsky SY; Tsaturyan AK
    Biophys J; 1995 Sep; 69(3):1011-21. PubMed ID: 8519956
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects on shortening velocity of rabbit skeletal muscle due to variations in the level of thin-filament activation.
    Moss RL
    J Physiol; 1986 Aug; 377():487-505. PubMed ID: 3795099
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Strong binding of myosin increases shortening velocity of rabbit skinned skeletal muscle fibres at low levels of Ca(2+).
    Swartz DR; Moss RL
    J Physiol; 2001 Jun; 533(Pt 2):357-65. PubMed ID: 11389197
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.
    Metzger JM
    Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The dependence of isometric tension, isometric ATPase activity, and shortening velocity of limulus muscle on the MgATP concentration.
    Pferrer S; Kulik R; Hiller T; Kuhn HJ
    Biophys J; 1988 Feb; 53(2):127-35. PubMed ID: 2964257
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Strain-dependent cross-bridge cycle for muscle. II. Steady-state behavior.
    Smith DA; Geeves MA
    Biophys J; 1995 Aug; 69(2):538-52. PubMed ID: 8527668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.