These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 10358123)

  • 81. The effect of shortening on energy liberation and high energy phosphate hydrolysis in frog skeletal muscle.
    Homsher E; Irving M; Yamada T
    Adv Exp Med Biol; 1984; 170():865-81. PubMed ID: 6741722
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle.
    Kawai M; Halvorson HR
    Biophys J; 1991 Feb; 59(2):329-42. PubMed ID: 2009356
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Polarized light observations on striated muscle contraction in a mite.
    Aronson JF
    J Cell Biol; 1967 Jan; 32(1):169-79. PubMed ID: 10976208
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Mechanochemical coupling in muscle: attempts to measure simultaneously shortening and ATPase rates in myofibrils.
    Lionne C; Travers F; Barman T
    Biophys J; 1996 Feb; 70(2):887-95. PubMed ID: 8789106
    [TBL] [Abstract][Full Text] [Related]  

  • 85. At physiological temperatures the ATPase rates of shortening soleus and psoas myofibrils are similar.
    Candau R; Iorga B; Travers F; Barman T; Lionne C
    Biophys J; 2003 Nov; 85(5):3132-41. PubMed ID: 14581213
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Detachment of low-force bridges contributes to the rapid tension transients of skinned rabbit skeletal muscle fibres.
    Seow CY; Shroff SG; Ford LE
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):149-64. PubMed ID: 9175000
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Force depression in single myofibrils.
    Joumaa V; Herzog W
    J Appl Physiol (1985); 2010 Feb; 108(2):356-62. PubMed ID: 20007852
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres.
    Dantzig JA; Hibberd MG; Trentham DR; Goldman YE
    J Physiol; 1991 Jan; 432():639-80. PubMed ID: 1886072
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Measurement of ATP turnover during shortening and lengthening of rabbit psoas myofibrils using a fluorescent ATP analog.
    Chaen S; Shirakawa I; Bagshaw CR; Sugi H
    Adv Exp Med Biol; 1998; 453():569-76. PubMed ID: 9889869
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
    Lännergren J
    J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation.
    Josephson RK; Edman KA
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):511-25. PubMed ID: 9518709
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements.
    Brunello E; Bianco P; Piazzesi G; Linari M; Reconditi M; Panine P; Narayanan T; Helsby WI; Irving M; Lombardi V
    J Physiol; 2006 Dec; 577(Pt 3):971-84. PubMed ID: 16990403
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Temperature sensitivity of force and shortening velocity in maximally activated skinned smooth muscle.
    Jaworowski A; Arner A
    J Muscle Res Cell Motil; 1998 Apr; 19(3):247-55. PubMed ID: 9583365
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils.
    Okamura N; Ishiwata S
    J Muscle Res Cell Motil; 1988 Apr; 9(2):111-9. PubMed ID: 3138284
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Distance of myofilament sliding per ATP molecule in skeletal muscle fibers studied using laser flash photolysis of caged ATP.
    Yamada T; Abe O; Kobayashi T; Sugi H
    Adv Exp Med Biol; 1993; 332():505-11. PubMed ID: 8109363
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Structural responses to the photolytic release of ATP in frog muscle fibres, observed by time-resolved X-ray diffraction.
    Tsaturyan AK; Bershitsky SY; Burns R; He ZH; Ferenczi MA
    J Physiol; 1999 Nov; 520 Pt 3(Pt 3):681-96. PubMed ID: 10545136
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Evidence that phosphate release is the rate-limiting step on the overall ATPase of psoas myofibrils prevented from shortening by chemical cross-linking.
    Lionne C; Iorga B; Candau R; Piroddi N; Webb MR; Belus A; Travers F; Barman T
    Biochemistry; 2002 Nov; 41(44):13297-308. PubMed ID: 12403632
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Increase in muscle power is associated with myofibrillar ATPase adaptations during resistance training.
    Philippe AG; Lionne C; Sanchez AMJ; Pagano AF; Candau R
    Exp Physiol; 2019 Aug; 104(8):1274-1285. PubMed ID: 31168842
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The working stroke of the myosin II motor in muscle is not tightly coupled to release of orthophosphate from its active site.
    Caremani M; Melli L; Dolfi M; Lombardi V; Linari M
    J Physiol; 2013 Oct; 591(20):5187-205. PubMed ID: 23878374
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Modulation by substrate concentration of maximal shortening velocity and isometric force in single myofibrils from frog and rabbit fast skeletal muscle.
    Tesi C; Colomo F; Nencini S; Piroddi N; Poggesi C
    J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):847-53. PubMed ID: 10200430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.