These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 10358123)

  • 101. Force and power generating mechanism(s) in active muscle as revealed from temperature perturbation studies.
    Ranatunga KW
    J Physiol; 2010 Oct; 588(Pt 19):3657-70. PubMed ID: 20660565
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Effect of active shortening and stretching on the rate of force re-development in rabbit psoas muscle fibres.
    Ames SR; Joumaa V; Herzog W
    J Exp Biol; 2022 Nov; 225(22):. PubMed ID: 36268629
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Cross-bridge kinetics studied with staircase shortening in single fibres from frog skeletal muscle.
    Linari M; Lombardi V; Piazzesi G
    J Muscle Res Cell Motil; 1997 Feb; 18(1):91-101. PubMed ID: 9147997
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Effect of strain on actomyosin kinetics in isometric muscle fibers.
    Siththanandan VB; Donnelly JL; Ferenczi MA
    Biophys J; 2006 May; 90(10):3653-65. PubMed ID: 16513783
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Stretch-shortening cycles protect against the age-related loss of power generation in rat single muscle fibres.
    Patterson MA; Hinks A; Njai BS; Dalton BE; Hubbard EF; Power GA
    Exp Gerontol; 2024 Jun; 190():112423. PubMed ID: 38608790
    [TBL] [Abstract][Full Text] [Related]  

  • 106. A new mechanokinetic model for muscle contraction, where force and movement are triggered by phosphate release.
    Smith DA
    J Muscle Res Cell Motil; 2014 Dec; 35(5-6):295-306. PubMed ID: 25319769
    [TBL] [Abstract][Full Text] [Related]  

  • 107. The elementary force generation process probed by temperature and length perturbations in muscle fibres from the rabbit.
    Bershitsky SY; Tsaturyan AK
    J Physiol; 2002 May; 540(Pt 3):971-88. PubMed ID: 11986383
    [TBL] [Abstract][Full Text] [Related]  

  • 108. A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle.
    Piazzesi G; Lombardi V
    Biophys J; 1995 May; 68(5):1966-79. PubMed ID: 7612839
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Transients in orientation of a fluorescent cross-bridge probe following photolysis of caged nucleotides in skeletal muscle fibres.
    Tanner JW; Thomas DD; Goldman YE
    J Mol Biol; 1992 Jan; 223(1):185-203. PubMed ID: 1530978
    [TBL] [Abstract][Full Text] [Related]  

  • 110. ATPase activity of intact single muscle fibres of Xenopus laevis is related to the rate of force redevelopment after rapid shortening.
    Stienen GJ; Lännergren J; Elzinga G
    Basic Res Cardiol; 1987; 82 Suppl 2():111-7. PubMed ID: 2959253
    [TBL] [Abstract][Full Text] [Related]  

  • 111. The effects of the level of activation and shortening velocity on energy output in type 3 muscle fibres from Xenopus laevis.
    Buschman HP; Elzinga G; Woledge RC
    Pflugers Arch; 1996; 433(1-2):153-9. PubMed ID: 9019716
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Effect of Active Lengthening and Shortening on Small-Angle X-ray Reflections in Skinned Skeletal Muscle Fibres.
    Joumaa V; Smith IC; Fukutani A; Leonard TR; Ma W; Mijailovich SM; Irving TC; Herzog W
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445232
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers.
    Roots H; Ball G; Talbot-Ponsonby J; King M; McBeath K; Ranatunga KW
    J Appl Physiol (1985); 2009 Feb; 106(2):378-84. PubMed ID: 19057001
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Kinetics of ATP hydrolysis and tension production in skinned cardiac muscle of the guinea pig.
    Barsotti RJ; Ferenczi MA
    J Biol Chem; 1988 Nov; 263(32):16750-6. PubMed ID: 3182811
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Kinetics of force generation and Pi release in rabbit soleus muscle fibers.
    Homsher E; Millar N
    Adv Exp Med Biol; 1993; 332():495-502; discussion 503. PubMed ID: 8109362
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Energetics of shortening depend on stimulation frequency in single muscle fibres from Xenopus laevis at 20 degrees C.
    Buschman HP; Elzinga G; Woledge RC
    Pflugers Arch; 1995 Jun; 430(2):160-7. PubMed ID: 7675627
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus).
    West TG; Toepfer CN; Woledge RC; Curtin NA; Rowlerson A; Kalakoutis M; Hudson P; Wilson AM
    J Exp Biol; 2013 Aug; 216(Pt 15):2974-82. PubMed ID: 23580727
    [TBL] [Abstract][Full Text] [Related]  

  • 118. The cross-bridge mechanism studied by flash photolysis of caged ATP in skeletal muscle fibers.
    Horiuti K
    Jpn J Physiol; 1997 Oct; 47(5):405-15. PubMed ID: 9504128
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Dynamic X-ray diffraction measurements following photolytic relaxation and activation of skinned rabbit psoas fibres.
    Poole KJ; Maeda Y; Rapp G; Goody RS
    Adv Biophys; 1991; 27():63-75. PubMed ID: 1836710
    [TBL] [Abstract][Full Text] [Related]  

  • 120. High mechanical efficiency of the cross-bridge powerstroke in skeletal muscle.
    Sugi H; Iwamoto H; Akimoto T; Kishi H
    J Exp Biol; 2003 Apr; 206(Pt 7):1201-6. PubMed ID: 12604580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.