These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 103582)

  • 1. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria.
    Bashford CL; Chance B; Prince RC
    Biochim Biophys Acta; 1979 Jan; 545(1):46-57. PubMed ID: 103582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of electrogenic electron transfer steps in chromatophore membrane of Chromatium vinosum by the response of merocyanin dye.
    Itoh S
    Biochim Biophys Acta; 1980 Dec; 593(2):212-23. PubMed ID: 7236632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of permeant ion uptake and carotenoid band shift as methods for determining the membrane potential in chromatophores from Rhodopseudomonas sphaeroides Ga.
    Ferguson SJ; Jones OT; Kell DB; Sorgato MC
    Biochem J; 1979 Apr; 180(1):75-85. PubMed ID: 226068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The light-induced carotenoid absorbance changes in Rhodopseudomonas sphaeroides: an analysis and interpretation of the band shifts.
    Symons M; Swysen C; Sybesma C
    Biochim Biophys Acta; 1977 Dec; 462(3):706-17. PubMed ID: 304358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the carotenoid bandshift and oxanol dyes to measure membrane potential changes during chemotactic stimulation of Rhodopseudomonas sphaeroides and Escherichia coli.
    Armitage JP; Evans MC
    FEBS Lett; 1981 Apr; 126(1):98-102. PubMed ID: 7016583
    [No Abstract]   [Full Text] [Related]  

  • 6. Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria.
    Monger TG; Cogdell RJ; Parson WW
    Biochim Biophys Acta; 1976 Oct; 449(1):136-53. PubMed ID: 823977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on the membrane potential and pH gradient in chromatophores and intact cells of photosynthetic bacteria.
    Barsky EL; Bonch-Osmolovskaya EA; Ostroumov SA; Samuilov VD; Skulachev VP
    Biochim Biophys Acta; 1975 May; 387(2):388-95. PubMed ID: 236031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanosecond fluorescence from chromatophores of Rhodopseudomonas sphaeroides and Rhodospirillum rubrum.
    Woodbury NW; Parson WW
    Biochim Biophys Acta; 1986 Jul; 850(2):197-210. PubMed ID: 3087422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotenoid and merocyanine probes in chromatophore membranes.
    Chance B
    Biomembranes; 1975; 7():33-55. PubMed ID: 804940
    [No Abstract]   [Full Text] [Related]  

  • 10. Light- and diffusion-potential-induced shift of carotenoid spectrum in reconstituted vesicles of Rhodopseudomonas sphaeroides.
    Matsuura K; Nishimura M
    Biochim Biophys Acta; 1977 Dec; 462(3):700-5. PubMed ID: 304357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of surface potential on the intramembrane electrical field measured with carotenoid spectral shift in chromatophores from Rhodopseudomonas sphaeroides.
    Matsuura K; Masamoto K; Itoh S; Nishimura M
    Biochim Biophys Acta; 1979 Jul; 547(1):91-102. PubMed ID: 37904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of reduction of the ubiquinone pool in photosynthetic bacteria at different redox potentials.
    de Grooth BG; van Grondelle R; Romijn JC; Pulles MP
    Biochim Biophys Acta; 1978 Sep; 503(3):480-90. PubMed ID: 99172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence of bacteriochlorophyll as related to the photochemistry of chromatophores of photosynthetic bacteria.
    Suzuki Y; Takamiya A
    Biochim Biophys Acta; 1972 Sep; 275(3):358-68. PubMed ID: 4627083
    [No Abstract]   [Full Text] [Related]  

  • 14. Phototaxis and membrane potential in the photosynthetic bacterium Rhodospirillum rubrum.
    Harayama S; Iino T
    J Bacteriol; 1977 Jul; 131(1):34-41. PubMed ID: 194880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The behavior of oxonol dyes in phospholipid dispersions.
    Bashford CL; Chance B; Smith JC; Yoshida T
    Biophys J; 1979 Jan; 25(1):63-85. PubMed ID: 263685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface potential on the periplasmic side of the photosynthetic membrane of Rhodopseudomonas sphaeroides.
    Matsuura K; Masamoto K; Itoh S; Nishimura M
    Biochim Biophys Acta; 1980 Aug; 592(1):121-9. PubMed ID: 6967328
    [No Abstract]   [Full Text] [Related]  

  • 17. Dichroism of bacteriochlorophyll in chromatophores of photosynthetic bacteria.
    Morita S; Miyazaki T
    J Biochem; 1978 Jun; 83(6):1715-20. PubMed ID: 97281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral identification of the electrochromically active carotenoids of Rhodobacter sphaeroides in chromatophores and reconstituted liposomes.
    Crielaard W; van Mourik F; van Grondelle R; Konings WN; Hellingwerf KJ
    Biochim Biophys Acta; 1992 Apr; 1100(1):9-14. PubMed ID: 1567885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-induced blue shift of the carotenoid spectrum in chromatophores of Chromatium vinosum strain D.
    Bowyer JR; Crofts AR
    Arch Biochem Biophys; 1980 Jul; 202(2):582-91. PubMed ID: 7458337
    [No Abstract]   [Full Text] [Related]  

  • 20. Electrical potential changes, H+ translocation and phosphorylation induced by short flash excitation in Rhodopseudomonas sphaeroides chromatophores.
    Saphon S; Jackson JB; Witt HT
    Biochim Biophys Acta; 1975 Oct; 408(1):67-82. PubMed ID: 240444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.