BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10359307)

  • 1. Mycobacterium avium infection in BALB/c and SCID mice.
    Fattorini L; Mattei M; Placido R; Li BO; Iona E; Agrimi U; Colizzi V; Orefici G
    J Med Microbiol; 1999 Jun; 48(6):577-583. PubMed ID: 10359307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of macrophages in host defence mechanisms against Mycobacterium avium complex infection induced in mice.
    Saito H; Tomioka H
    Res Microbiol; 1990 Feb; 141(2):206-12. PubMed ID: 2345799
    [No Abstract]   [Full Text] [Related]  

  • 3. Control of Mycobacterium fortuitum and Mycobacterium intracellulare infections with respect to distinct granuloma formations in livers of BALB/c mice.
    Silva TR; Petersen AL; Santos Tde A; Almeida TF; Freitas LA; Veras PS
    Mem Inst Oswaldo Cruz; 2010 Aug; 105(5):642-8. PubMed ID: 20835610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of in vivo therapeutic efficacy of a new benzoxazinorifamycin, KRM-1648, in SCID mouse model for disseminated Mycobacterium avium complex infection.
    Emori M; Tomioka H; Sato K; Saito H
    Int J Antimicrob Agents; 1998 Apr; 10(1):59-65. PubMed ID: 9624545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD4+ T cells but Not CD8+ or gammadelta+ lymphocytes are required for host protection against Mycobacterium avium infection and dissemination through the intestinal route.
    Petrofsky M; Bermudez LE
    Infect Immun; 2005 May; 73(5):2621-7. PubMed ID: 15845464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunomodulatory events in Mycobacterium avium infections.
    Denis M
    Res Microbiol; 1994; 145(3):225-9. PubMed ID: 7809476
    [No Abstract]   [Full Text] [Related]  

  • 7. IL-10 neutralization augments mouse resistance to systemic Mycobacterium avium infections.
    Denis M; Ghadirian E
    J Immunol; 1993 Nov; 151(10):5425-30. PubMed ID: 8228235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fibrinolytic system in dissemination and matrix protein deposition during a mycobacterium infection.
    Sato J; Schorey J; Ploplis VA; Haalboom E; Krahule L; Castellino FJ
    Am J Pathol; 2003 Aug; 163(2):517-31. PubMed ID: 12875972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function.
    Welsh RM; Brubaker JO; Vargas-Cortes M; O'Donnell CL
    J Exp Med; 1991 May; 173(5):1053-63. PubMed ID: 1850779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunobiology of Mycobacterium avium infection.
    Bermudez LE
    Eur J Clin Microbiol Infect Dis; 1994 Nov; 13(11):1000-6. PubMed ID: 7698113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure of BALB/c mice to low doses of Mycobacterium avium increases resistance to a subsequent high-dose infection.
    Fattorini L; Nisini R; Fan Y; Li YJ; Tan D; Mariotti S; Teloni R; Iona E; Orefici G
    Microbiology (Reading); 2002 Oct; 148(Pt 10):3173-3181. PubMed ID: 12368451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toll-like receptor 6 senses Mycobacterium avium and is required for efficient control of mycobacterial infection.
    Marinho FA; de Paula RR; Mendes AC; de Almeida LA; Gomes MT; Carvalho NB; Oliveira FS; Caliari MV; Oliveira SC
    Eur J Immunol; 2013 Sep; 43(9):2373-85. PubMed ID: 23716075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Course of infection with the emergent pathogen Brucella microti in immunocompromised mice.
    Jiménez de Bagüés MP; de Martino A; Quintana JF; Alcaraz A; Pardo J
    Infect Immun; 2011 Oct; 79(10):3934-9. PubMed ID: 21825066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of immunosuppressive macrophages generated by Mycobacterium intracellulare infection in M. intracellulare-susceptible and resistant mice.
    Tatano Y; Shimizu T; Tomioka H
    New Microbiol; 2010 Jan; 33(1):87-91. PubMed ID: 20402419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of macrophage activation and of Bcg-encoded macrophage function(s) in the control of Mycobacterium avium infection in mice.
    Appelberg R; Sarmento AM
    Clin Exp Immunol; 1990 Jun; 80(3):324-31. PubMed ID: 2115416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cytolytic activity of natural killer cells is not involved in the restriction of Mycobacterium avium growth.
    Flórido M; Correia-Neves M; Cooper AM; Appelberg R
    Int Immunol; 2003 Aug; 15(8):895-901. PubMed ID: 12882827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adoptive transfer of BALb/c mouse splenocytes reduces lesion severity and induces intestinal pathophysiologic changes in the Mycobacterium avium Subspecies paratuberculosis beige/scid mouse model.
    Mutwiri GK; Rosendal S; Kosecka U; Yager JA; Perdue M; Snider D; Butler DG
    Comp Med; 2002 Aug; 52(4):332-41. PubMed ID: 12211277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pathogenicities of Mycobacterium intracellulare and M. avium strains to the mice which were isolated from non-tuberculous mycobactriosis patients].
    Goto Y; Iwakiri A; Shinjo T
    Kansenshogaku Zasshi; 2002 Jun; 76(6):425-31. PubMed ID: 12136650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development of experimental model animals for disseminated Mycobacterium avium complex infections using immunodeficient mice and rats].
    Emori M; Saito H; Tomioka H; Setogawa T
    Kekkaku; 1994 Apr; 69(4):317-22. PubMed ID: 8189685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Mycobacterium avium pathogenesis.
    Bermudez LE; Wagner D; Sosnowska D
    Arch Immunol Ther Exp (Warsz); 2000; 48(6):521-7. PubMed ID: 11197607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.