These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 10359307)
1. Mycobacterium avium infection in BALB/c and SCID mice. Fattorini L; Mattei M; Placido R; Li BO; Iona E; Agrimi U; Colizzi V; Orefici G J Med Microbiol; 1999 Jun; 48(6):577-583. PubMed ID: 10359307 [TBL] [Abstract][Full Text] [Related]
2. The role of macrophages in host defence mechanisms against Mycobacterium avium complex infection induced in mice. Saito H; Tomioka H Res Microbiol; 1990 Feb; 141(2):206-12. PubMed ID: 2345799 [No Abstract] [Full Text] [Related]
3. Control of Mycobacterium fortuitum and Mycobacterium intracellulare infections with respect to distinct granuloma formations in livers of BALB/c mice. Silva TR; Petersen AL; Santos Tde A; Almeida TF; Freitas LA; Veras PS Mem Inst Oswaldo Cruz; 2010 Aug; 105(5):642-8. PubMed ID: 20835610 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of in vivo therapeutic efficacy of a new benzoxazinorifamycin, KRM-1648, in SCID mouse model for disseminated Mycobacterium avium complex infection. Emori M; Tomioka H; Sato K; Saito H Int J Antimicrob Agents; 1998 Apr; 10(1):59-65. PubMed ID: 9624545 [TBL] [Abstract][Full Text] [Related]
5. CD4+ T cells but Not CD8+ or gammadelta+ lymphocytes are required for host protection against Mycobacterium avium infection and dissemination through the intestinal route. Petrofsky M; Bermudez LE Infect Immun; 2005 May; 73(5):2621-7. PubMed ID: 15845464 [TBL] [Abstract][Full Text] [Related]
6. Immunomodulatory events in Mycobacterium avium infections. Denis M Res Microbiol; 1994; 145(3):225-9. PubMed ID: 7809476 [No Abstract] [Full Text] [Related]
7. IL-10 neutralization augments mouse resistance to systemic Mycobacterium avium infections. Denis M; Ghadirian E J Immunol; 1993 Nov; 151(10):5425-30. PubMed ID: 8228235 [TBL] [Abstract][Full Text] [Related]
8. The fibrinolytic system in dissemination and matrix protein deposition during a mycobacterium infection. Sato J; Schorey J; Ploplis VA; Haalboom E; Krahule L; Castellino FJ Am J Pathol; 2003 Aug; 163(2):517-31. PubMed ID: 12875972 [TBL] [Abstract][Full Text] [Related]
9. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. Welsh RM; Brubaker JO; Vargas-Cortes M; O'Donnell CL J Exp Med; 1991 May; 173(5):1053-63. PubMed ID: 1850779 [TBL] [Abstract][Full Text] [Related]
11. Exposure of BALB/c mice to low doses of Mycobacterium avium increases resistance to a subsequent high-dose infection. Fattorini L; Nisini R; Fan Y; Li YJ; Tan D; Mariotti S; Teloni R; Iona E; Orefici G Microbiology (Reading); 2002 Oct; 148(Pt 10):3173-3181. PubMed ID: 12368451 [TBL] [Abstract][Full Text] [Related]
12. Toll-like receptor 6 senses Mycobacterium avium and is required for efficient control of mycobacterial infection. Marinho FA; de Paula RR; Mendes AC; de Almeida LA; Gomes MT; Carvalho NB; Oliveira FS; Caliari MV; Oliveira SC Eur J Immunol; 2013 Sep; 43(9):2373-85. PubMed ID: 23716075 [TBL] [Abstract][Full Text] [Related]
13. Course of infection with the emergent pathogen Brucella microti in immunocompromised mice. Jiménez de Bagüés MP; de Martino A; Quintana JF; Alcaraz A; Pardo J Infect Immun; 2011 Oct; 79(10):3934-9. PubMed ID: 21825066 [TBL] [Abstract][Full Text] [Related]
14. Properties of immunosuppressive macrophages generated by Mycobacterium intracellulare infection in M. intracellulare-susceptible and resistant mice. Tatano Y; Shimizu T; Tomioka H New Microbiol; 2010 Jan; 33(1):87-91. PubMed ID: 20402419 [TBL] [Abstract][Full Text] [Related]
15. The role of macrophage activation and of Bcg-encoded macrophage function(s) in the control of Mycobacterium avium infection in mice. Appelberg R; Sarmento AM Clin Exp Immunol; 1990 Jun; 80(3):324-31. PubMed ID: 2115416 [TBL] [Abstract][Full Text] [Related]
16. The cytolytic activity of natural killer cells is not involved in the restriction of Mycobacterium avium growth. Flórido M; Correia-Neves M; Cooper AM; Appelberg R Int Immunol; 2003 Aug; 15(8):895-901. PubMed ID: 12882827 [TBL] [Abstract][Full Text] [Related]
17. Adoptive transfer of BALb/c mouse splenocytes reduces lesion severity and induces intestinal pathophysiologic changes in the Mycobacterium avium Subspecies paratuberculosis beige/scid mouse model. Mutwiri GK; Rosendal S; Kosecka U; Yager JA; Perdue M; Snider D; Butler DG Comp Med; 2002 Aug; 52(4):332-41. PubMed ID: 12211277 [TBL] [Abstract][Full Text] [Related]
18. [Pathogenicities of Mycobacterium intracellulare and M. avium strains to the mice which were isolated from non-tuberculous mycobactriosis patients]. Goto Y; Iwakiri A; Shinjo T Kansenshogaku Zasshi; 2002 Jun; 76(6):425-31. PubMed ID: 12136650 [TBL] [Abstract][Full Text] [Related]
19. [Development of experimental model animals for disseminated Mycobacterium avium complex infections using immunodeficient mice and rats]. Emori M; Saito H; Tomioka H; Setogawa T Kekkaku; 1994 Apr; 69(4):317-22. PubMed ID: 8189685 [TBL] [Abstract][Full Text] [Related]