BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 10359660)

  • 1. Autoinhibition of neuronal nitric oxide synthase: distinct effects of reactive nitrogen and oxygen species on enzyme activity.
    Kotsonis P; Frey A; Fröhlich LG; Hofmann H; Reif A; Wink DA; Feelisch M; Schmidt HH
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):745-52. PubMed ID: 10359660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allosteric regulation of neuronal nitric oxide synthase by tetrahydrobiopterin and suppression of auto-damaging superoxide.
    Kotsonis P; Fröhlich LG; Shutenko ZV; Horejsi R; Pfleiderer W; Schmidt HH
    Biochem J; 2000 Mar; 346 Pt 3(Pt 3):767-76. PubMed ID: 10698705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide-induced autoinhibition of neuronal nitric oxide synthase in the presence of the autoxidation-resistant pteridine 5-methyltetrahydrobiopterin.
    Gorren AC; Schrammel A; Riethmüller C; Schmidt K; Koesling D; Werner ER; Mayer B
    Biochem J; 2000 Apr; 347(Pt 2):475-84. PubMed ID: 10749677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal vasoconstriction induced by oxidized LDL is inhibited by scavengers of reactive oxygen species and L-arginine.
    Rahman MM; Varghese Z; Fuller BJ; Moorhead JF
    Clin Nephrol; 1999 Feb; 51(2):98-107. PubMed ID: 10069645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of divalent cations on neuronal nitric oxide synthase activity.
    Weaver J; Porasuphatana S; Tsai P; Cao GL; Budzichowski TA; Roman LJ; Rosen GM
    Toxicol Sci; 2004 Oct; 81(2):325-31. PubMed ID: 15240894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-induced radical intermediates in the nNOS oxygenase domain regulated by L-arginine, tetrahydrobiopterin, and thiol.
    Berka V; Wang LH; Tsai AL
    Biochemistry; 2008 Jan; 47(1):405-20. PubMed ID: 18052254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of reactive oxygen metabolites on endothelial permeability: role of nitric oxide and iron.
    Okayama N; Grisham MB; Kevil CG; Eppihimer LA; Wink DA; Alexander JS
    Microcirculation; 1999 Jun; 6(2):107-16. PubMed ID: 10466113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial nitric oxide synthase activation leads to dilatory H2O2 production in mouse cerebral arteries.
    Drouin A; Thorin-Trescases N; Hamel E; Falck JR; Thorin E
    Cardiovasc Res; 2007 Jan; 73(1):73-81. PubMed ID: 17113574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase.
    Rusche KM; Spiering MM; Marletta MA
    Biochemistry; 1998 Nov; 37(44):15503-12. PubMed ID: 9799513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide dismutase and catalase are required to detect (.-)NO from both coupled and uncoupled neuronal no synthase.
    Reif A; Shutenko ZV; Feelisch M; Schmidt HH
    Free Radic Biol Med; 2004 Oct; 37(7):988-97. PubMed ID: 15336315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of nitric-oxide synthase by nicotine.
    Tonnessen BH; Severson SR; Hurt RD; Miller VM
    J Pharmacol Exp Ther; 2000 Nov; 295(2):601-6. PubMed ID: 11046094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidants inhibit human endothelial cell functions through down-regulation of endothelial nitric oxide synthase activity.
    Polytarchou C; Papadimitriou E
    Eur J Pharmacol; 2005 Mar; 510(1-2):31-8. PubMed ID: 15740722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in nitric oxide synthase activity during exposure to hydrogen peroxide in cultured endothelial cells.
    Shimizu S; Nomoto M; Ishii M; Naito S; Yamamoto T; Momose K
    Res Commun Mol Pathol Pharmacol; 1997 Sep; 97(3):279-89. PubMed ID: 9387188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal nitric oxide synthase (NNOS) catalyzes one-electron reduction of 2,4,6-trinitrotoluene, resulting in decreased nitric oxide production and increased nNOS gene expression: implication for oxidative stress.
    Kumagai Y; Kikushima M; Nakai Y; Shimojo N; Kunimoto M
    Free Radic Biol Med; 2004 Aug; 37(3):350-7. PubMed ID: 15223068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of oxygen radicals on the activity of nitric oxide synthase and guanylate cyclase.
    Kim SM; Byun JS; Jung YD; Kang IC; Choi SY; Lee KY
    Exp Mol Med; 1998 Dec; 30(4):221-6. PubMed ID: 9894152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative nitric oxide-producing substrates for NO synthases.
    Mansuy D; Boucher JL
    Free Radic Biol Med; 2004 Oct; 37(8):1105-21. PubMed ID: 15451052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide synthase: involvement of oxygen radicals in conversion of L-arginine to nitric oxide.
    Mittal CK
    Biochem Biophys Res Commun; 1993 May; 193(1):126-32. PubMed ID: 7684903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of reactive nitrogen/oxygen intermediates in cytokine-induced trophoblast apoptosis.
    Smith SC; Guilbert LJ; Yui J; Baker PN; Davidge ST
    Placenta; 1999 May; 20(4):309-15. PubMed ID: 10329352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.
    Berka V; Yeh HC; Gao D; Kiran F; Tsai AL
    Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of neuronal NO synthase under single-turnover conditions: conversion of Nomega-hydroxyarginine to nitric oxide and citrulline.
    Abu-Soud HM; Presta A; Mayer B; Stuehr DJ
    Biochemistry; 1997 Sep; 36(36):10811-6. PubMed ID: 9312270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.