These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10360231)

  • 1. Vacuole formation in fatigued single muscle fibres from frog and mouse.
    Lännergren J; Bruton JD; Westerblad H
    J Muscle Res Cell Motil; 1999 Jan; 20(1):19-32. PubMed ID: 10360231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vacuole formation in fatigued skeletal muscle fibres from frog and mouse: effects of extracellular lactate.
    Lännergren J; Bruton JD; Westerblad H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):597-611. PubMed ID: 10922011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible vacuolation of the transverse tubules of frog skeletal muscle: a confocal fluorescence microscopy study.
    Krolenko SA; Amos WB; Lucy JA
    J Muscle Res Cell Motil; 1995 Aug; 16(4):401-11. PubMed ID: 7499480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic vacuolation in skeletal muscle fibres after fatigue.
    Lännergren J; Westerblad H; Bruton JD
    Cell Biol Int; 2002; 26(10):911-20. PubMed ID: 12421582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tubular vacuolation process in amphibian skeletal muscle.
    Fraser JA; Skepper JN; Hockaday AR; Huang CL
    J Muscle Res Cell Motil; 1998 Aug; 19(6):613-29. PubMed ID: 9742446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient appearance of vacuoles in fatigued Xenopus muscle fibres.
    Lännergren J; Westerblad H; Flock B
    Acta Physiol Scand; 1990 Nov; 140(3):437-45. PubMed ID: 2082709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural changes accompanying development of fatigue in frog twitch skeletal muscle fibres.
    Lipska E; Novotova M; Radzyukevich T; Zahradnik I
    Endocr Regul; 2005 Jun; 39(2):43-52. PubMed ID: 16229154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance to fatigue of individual Xenopus single skeletal muscle fibres is correlated with mitochondrial volume density.
    Stary CM; Mathieu-Costello O; Hogan MC
    Exp Physiol; 2004 Sep; 89(5):617-21. PubMed ID: 15258122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice.
    Bruton JD; Dahlstedt AJ; Abbate F; Westerblad H
    J Physiol; 2003 Oct; 552(Pt 2):393-402. PubMed ID: 14561823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in mitochondrial Ca2+ detected with Rhod-2 in single frog and mouse skeletal muscle fibres during and after repeated tetanic contractions.
    Lännergren J; Westerblad H; Bruton JD
    J Muscle Res Cell Motil; 2001; 22(3):265-75. PubMed ID: 11763199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres.
    Cheng AJ; Bruton JD; Lanner JT; Westerblad H
    J Physiol; 2015 Jan; 593(2):457-72. PubMed ID: 25630265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of T-tubular vacuoles in eccentrically damaged mouse muscle fibres.
    Yeung EW; Balnave CD; Ballard HJ; Bourreau JP; Allen DG
    J Physiol; 2002 Apr; 540(Pt 2):581-92. PubMed ID: 11956345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent tubular conduction in vacuolated amphibian skeletal muscle following osmotic shock.
    Devlin CM; Chawl S; Skepper JN; Huan CL
    J Muscle Res Cell Motil; 2001; 22(5):459-66. PubMed ID: 11964071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow recovery of force in single skeletal muscle fibres.
    Lännergren J; Westerblad H; Bruton JD
    Acta Physiol Scand; 1996 Mar; 156(3):193-202. PubMed ID: 8729679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.
    Bruton JD; Place N; Yamada T; Silva JP; Andrade FH; Dahlstedt AJ; Zhang SJ; Katz A; Larsson NG; Westerblad H
    J Physiol; 2008 Jan; 586(1):175-84. PubMed ID: 18006575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle.
    Zhang SJ; Bruton JD; Katz A; Westerblad H
    J Physiol; 2006 Apr; 572(Pt 2):551-9. PubMed ID: 16455685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mitochondrial-targeted antioxidant improves myofilament Ca
    Gandra PG; Shiah AA; Nogueira L; Hogan MC
    J Physiol; 2018 Mar; 596(6):1079-1089. PubMed ID: 29334129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Functional role of vacuolization of the T-system of skeletal muscle fibers].
    Krolenko SA; Adamian SIa; Lucy JA
    Tsitologiia; 1997; 39(10):878-88. PubMed ID: 9505335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.