These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 10360232)

  • 21. Tension responses to sudden length change in stimulated frog muscle fibres near slack length.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1977 Jul; 269(2):441-515. PubMed ID: 302333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of force enhancement during stretching of skeletal muscle fibres investigated by high time-resolved stiffness measurements.
    Nocella M; Bagni MA; Cecchi G; Colombini B
    J Muscle Res Cell Motil; 2013 Feb; 34(1):71-81. PubMed ID: 23296372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of repeated active stretches on tension generation and myoplasmic calcium in frog single muscle fibres.
    Morgan DL; Claflin DR; Julian FJ
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):665-74. PubMed ID: 9003552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness.
    Mijailovich SM; Fredberg JJ; Butler JP
    Biophys J; 1996 Sep; 71(3):1475-84. PubMed ID: 8874021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative analysis of sarcomere non-uniformities in active muscle following a stretch.
    Talbot JA; Morgan DL
    J Muscle Res Cell Motil; 1996 Apr; 17(2):261-8. PubMed ID: 8793727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strain of passive elements during force enhancement by stretch in frog muscle fibres.
    Edman KA; Tsuchiya T
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):191-205. PubMed ID: 8745287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compliance of thin filaments in skinned fibers of rabbit skeletal muscle.
    Higuchi H; Yanagida T; Goldman YE
    Biophys J; 1995 Sep; 69(3):1000-10. PubMed ID: 8519955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of temperature and velocity of stretching on stress relaxation of contracting frog muscle fibres.
    Cavagna GA
    J Physiol; 1993 Mar; 462():161-73. PubMed ID: 8331582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in the x-ray diffraction pattern from single, intact muscle fibers produced by rapid shortening and stretch.
    Piazzesi G; Lombardi V; Ferenczi MA; Thirlwell H; Dobbie I; Irving M
    Biophys J; 1995 Apr; 68(4 Suppl):92S-96S; discussion 96S-98S. PubMed ID: 7787115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Storage and release of mechanical energy by contracting frog muscle fibres.
    Cavagna GA; Heglund NC; Harry JD; Mantovani M
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):689-708. PubMed ID: 7707236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle.
    Huxley HE; Stewart A; Sosa H; Irving T
    Biophys J; 1994 Dec; 67(6):2411-21. PubMed ID: 7696481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of low-level activation on the mechanical properties of isolated frog muscle fibers.
    Lännergren J
    J Gen Physiol; 1971 Aug; 58(2):145-62. PubMed ID: 5559620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proposed mechanism of force generation in striated muscle.
    Huxley AF; Simmons RM
    Nature; 1971 Oct; 233(5321):533-8. PubMed ID: 4939977
    [No Abstract]   [Full Text] [Related]  

  • 35. Muscular contraction.
    Huxley AF
    J Physiol; 1974 Nov; 243(1):1-43. PubMed ID: 4449057
    [No Abstract]   [Full Text] [Related]  

  • 36. Mechanical transients initiated by ramp stretch and release to Po in frog muscle fibers.
    Cavagna GA; Mazzanti M; Heglund NC; Citterio G
    Am J Physiol; 1986 Oct; 251(4 Pt 1):C571-9. PubMed ID: 3490184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plateau and descending limb of the sarcomere length-tension relation in short length-clamped segments of frog muscle fibres.
    Bagni MA; Cecchi G; Colomo F; Tesi C
    J Physiol; 1988 Jul; 401():581-95. PubMed ID: 3262740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tension responses of frog skeletal muscle fibres to rapid shortening and lengthening steps.
    Bressler BH; Dusik LA; Menard MR
    J Physiol; 1988 Mar; 397():631-41. PubMed ID: 3261797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanisms of force enhancement during constant velocity lengthening in tetanized single fibres of frog muscle.
    Colomo F; Lombardi V; Piazzesi G
    Adv Exp Med Biol; 1988; 226():489-502. PubMed ID: 3261491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres.
    Sugi H; Tsuchiya T
    J Physiol; 1988 Dec; 407():215-29. PubMed ID: 3256616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.