These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 10360326)
1. Prediction of peptide retention times in normal-phase liquid chromatography with only a single gradient run. Yoshida T; Okada T J Chromatogr A; 1999 May; 841(1):19-32. PubMed ID: 10360326 [TBL] [Abstract][Full Text] [Related]
2. Comparison between the isocratic and gradient retention behaviour of polypeptides in reversed-phase liquid chromatographic environments. Purcell AW; Zhao GL; Aguilar MI; Hearn MT J Chromatogr A; 1999 Aug; 852(1):43-57. PubMed ID: 10480229 [TBL] [Abstract][Full Text] [Related]
3. Applicability of linear and nonlinear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins. Tyteca E; De Vos J; Vankova N; Cesla P; Desmet G; Eeltink S J Sep Sci; 2016 Apr; 39(7):1249-57. PubMed ID: 26829155 [TBL] [Abstract][Full Text] [Related]
4. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
5. New approach to linear gradient elution used for optimisation in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A J Chromatogr A; 2005 Mar; 1068(2):279-87. PubMed ID: 15830934 [TBL] [Abstract][Full Text] [Related]
6. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. III. Separation mechanism and gradient optimization. Mengerink Y; Peters R; van der Wal S; Claessens HA; Cramers CA J Chromatogr A; 2002 Mar; 949(1-2):307-26. PubMed ID: 11999748 [TBL] [Abstract][Full Text] [Related]
7. Prediction of peptide retention at different HPLC conditions from multiple linear regression models. Baczek T; Wiczling P; Marszałł M; Heyden YV; Kaliszan R J Proteome Res; 2005; 4(2):555-63. PubMed ID: 15822934 [TBL] [Abstract][Full Text] [Related]
8. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
10. Utility of linear and nonlinear models for retention prediction in liquid chromatography. Gilar M; Hill J; McDonald TS; Gritti F J Chromatogr A; 2020 Feb; 1613():460690. PubMed ID: 31727355 [TBL] [Abstract][Full Text] [Related]
11. A model for predicting slopes S in the basic equation for the linear-solvent-strength theory of peptide separation by reversed-phase high-performance liquid chromatography. Vu H; Spicer V; Gotfrid A; Krokhin OV J Chromatogr A; 2010 Jan; 1217(4):489-97. PubMed ID: 20004401 [TBL] [Abstract][Full Text] [Related]
13. Predicting retention time shifts associated with variation of the gradient slope in peptide RP-HPLC. Spicer V; Grigoryan M; Gotfrid A; Standing KG; Krokhin OV Anal Chem; 2010 Dec; 82(23):9678-85. PubMed ID: 21049933 [TBL] [Abstract][Full Text] [Related]
14. Peptide retention standards and hydrophobicity indexes in reversed-phase high-performance liquid chromatography of peptides. Krokhin OV; Spicer V Anal Chem; 2009 Nov; 81(22):9522-30. PubMed ID: 19848410 [TBL] [Abstract][Full Text] [Related]
15. pH gradient reversed-phase liquid chromatography as a fractionation tool for the separation of peptides. Baczek T; Walijewski Ł; Kaliszan R Talanta; 2008 Mar; 75(1):76-82. PubMed ID: 18371850 [TBL] [Abstract][Full Text] [Related]
16. Calculation of peptide retention coefficients in normal-phase liquid chromatography. Yoshida T J Chromatogr A; 1998 May; 808(1-2):105-12. PubMed ID: 9652112 [TBL] [Abstract][Full Text] [Related]
17. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins. Jandera P; Kučerová Z; Urban J J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334 [TBL] [Abstract][Full Text] [Related]
18. Peptide separation in normal-phase liquid chromatography. Study of selectivity and mobile phase effects on various columns. Yoshida T; Okada T J Chromatogr A; 1999 Apr; 840(1):1-9. PubMed ID: 10335608 [TBL] [Abstract][Full Text] [Related]
19. High-performance liquid chromatography of amino acids, peptides and proteins. LXXXV. Evaluation of the use of hydrophobicity coefficients for the prediction of peptide elution profiles. Hearn MT; Aguilar MI; Mant CT; Hodges RS J Chromatogr; 1988 Apr; 438(2):197-210. PubMed ID: 3384884 [TBL] [Abstract][Full Text] [Related]
20. Reversed-phase liquid chromatography of the opioid peptides--2. Quantitative structure-retention relationships and isocratic retention prediction. Dave K; Stobaugh JF; Riley CM J Pharm Biomed Anal; 1992 Jan; 10(1):49-60. PubMed ID: 1391083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]