These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 10360546)

  • 1. Experimental assessment of power and temperature penetration depth control with a dual frequency ultrasonic system.
    Moros EG; Fan X; Straube WL
    Med Phys; 1999 May; 26(5):810-7. PubMed ID: 10360546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SURLAS: a new clinical grade ultrasound system for sequential or concomitant thermoradiotherapy of superficial tumors: applicator description.
    Novák P; Moros EG; Straube WL; Myerson RJ
    Med Phys; 2005 Jan; 32(1):230-40. PubMed ID: 15719974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of penetration depth control using parallel opposed ultrasound arrays and a scanning reflector.
    Moros EG; Fan X; Straube WL
    J Acoust Soc Am; 1997 Mar; 101(3):1734-41. PubMed ID: 9069639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment delivery software for a new clinical grade ultrasound system for thermoradiotherapy.
    Novák P; Moros EG; Straube WL; Myerson RJ
    Med Phys; 2005 Nov; 32(11):3246-56. PubMed ID: 16372408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential for power deposition conformability using reflected-scanned planar ultrasound.
    Moros EG; Straube WL; Myerson RJ
    Int J Hyperthermia; 1996; 12(6):723-36. PubMed ID: 8950153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical and in vitro evaluation of temperature fluctuations during reflected-scanned planar ultrasound hyperthermia.
    Moros EG; Fan X; Straube WL; Myerson RJ
    Int J Hyperthermia; 1998; 14(4):367-82. PubMed ID: 9690149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between acoustic aperture size and tumor conditions for external ultrasound hyperthermia.
    Lin WL; Yen JY; Chen YY; Jin KW; Shieh MJ
    Med Phys; 1999 May; 26(5):818-24. PubMed ID: 10360547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and experimental evaluation of a 256-channel dual-frequency ultrasound phased-array system for transcranial blood-brain barrier opening and brain drug delivery.
    Liu HL; Jan CK; Chu PC; Hong JC; Lee PY; Hsu JD; Lin CC; Huang CY; Chen PY; Wei KC
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1350-60. PubMed ID: 24658258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency considerations for deep ablation with high-intensity focused ultrasound: A simulation study.
    Ellens N; Hynynen K
    Med Phys; 2015 Aug; 42(8):4896-10. PubMed ID: 26233216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-mode transducers for ultrasound imaging and thermal therapy.
    Owen NR; Chapelon JY; Bouchoux G; Berriet R; Fleury G; Lafon C
    Ultrasonics; 2010 Feb; 50(2):216-20. PubMed ID: 19758673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel dual-frequency imaging method for intravascular ultrasound applications.
    Qiu W; Chen Y; Wong CM; Liu B; Dai J; Zheng H
    Ultrasonics; 2015 Mar; 57():31-5. PubMed ID: 25454093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated endoscope for real-time 3D ultrasound imaging and hyperthermia: feasibility study.
    Pua EC; Qiu Y; Smith SW
    Ultrason Imaging; 2007 Jan; 29(1):1-14. PubMed ID: 17491295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two dimensional arrays for real time 3D intravascular ultrasound.
    Light ED; Smith SW
    Ultrason Imaging; 2004 Apr; 26(2):115-28. PubMed ID: 15344415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
    Ross AB; Diederich CJ; Nau WH; Rieke V; Butts RK; Sommer G; Gill H; Bouley DM
    Med Phys; 2005 Jun; 32(6):1555-65. PubMed ID: 16013714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axial control of thermal coagulation using a multi-element interstitial ultrasound applicator with internal cooling.
    Deardorff DL; Diederich CJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):170-8. PubMed ID: 18238528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of intracavitary ultrasonic applicators for hyperthermia: a design and experimental study.
    Diederich CJ; Hynynen K
    Med Phys; 1990; 17(4):626-34. PubMed ID: 2215407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging.
    Viallon M; Terraz S; Roland J; Dumont E; Becker CD; Salomir R
    Med Phys; 2010 Apr; 37(4):1491-506. PubMed ID: 20443470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz.
    Rossetto F; Stauffer PR
    Int J Hyperthermia; 2001; 17(3):258-70. PubMed ID: 11347730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.