These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10360724)

  • 1. Electric analog model of the aortic valve for calculation of continuous beat-to-beat aortic flow using a pressure gradient.
    Graen MD; Ewert DL; Glower JS; Gray LA; Koenig SC
    ASAIO J; 1999; 45(3):204-10. PubMed ID: 10360724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of mild orthostatic stress on aortic-cerebral hemodynamic transmission: insight from the frequency domain.
    Sugawara J; Tomoto T; Imai T; Maeda S; Ogoh S
    Am J Physiol Heart Circ Physiol; 2017 May; 312(5):H1076-H1084. PubMed ID: 28258058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can a linear electrical analog model of a mechanical valve predict flow by using a pressure gradient?
    Graen MD; Ewert DL; Glower JS; Gray LA; Koenig SC
    ASAIO J; 2000; 46(5):563-8. PubMed ID: 11016507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation of a simplified relation for assessing aortic root pressure drop incorporating wall compliance.
    Mohammadi H; Cartier R; Mongrain R
    Med Biol Eng Comput; 2015 Mar; 53(3):241-51. PubMed ID: 25430422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocardiogram-synchronized rotational speed change mode in rotary pumps could improve pulsatility.
    Ando M; Nishimura T; Takewa Y; Yamazaki K; Kyo S; Ono M; Tsukiya T; Mizuno T; Taenaka Y; Tatsumi E
    Artif Organs; 2011 Oct; 35(10):941-7. PubMed ID: 21615427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the aortic valve deformation by considering blood flow reflection.
    Mukai N; Nakagawa M; Abe Y; Chang Y; Niki K; Takanashi S
    Stud Health Technol Inform; 2013; 184():286-92. PubMed ID: 23400172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical modeling of the instantaneous pressure gradient across the aortic valve.
    Garcia D; Pibarot P; Durand LG
    J Biomech; 2005 Jun; 38(6):1303-11. PubMed ID: 15863115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of heart rate, preload, and afterload on the viscoelastic properties of the swine myocardium.
    Ewert D; Wheeler B; Doetkott C; Ionan C; Pantalos G; Koenig SC
    Ann Biomed Eng; 2004 Sep; 32(9):1211-22. PubMed ID: 15493509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The combined role of sinuses of Valsalva and flow pulsatility improves energy loss of the aortic valve.
    Salica A; Pisani G; Morbiducci U; Scaffa R; Massai D; Audenino A; Weltert L; Guerrieri Wolf L; De Paulis R
    Eur J Cardiothorac Surg; 2016 Apr; 49(4):1222-7. PubMed ID: 26362428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood hammer phenomenon in human aorta: Theory and modeling.
    Chuiko GP; Dvornik OV; Shyian SI; Baganov YA
    Math Biosci; 2018 Sep; 303():148-154. PubMed ID: 30036543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.
    Medvitz RB; Kreider JW; Manning KB; Fontaine AA; Deutsch S; Paterson EG
    ASAIO J; 2007; 53(2):122-31. PubMed ID: 17413548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle Based Simulation of the Aortic Valve by Considering Heart's Pulsation.
    Mukai N; Abe Y; Chang Y; Niki K; Takanashi S
    Stud Health Technol Inform; 2014; 196():285-9. PubMed ID: 24732523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the aortic pressure waveform and beat-to-beat relative cardiac output changes from multiple peripheral artery pressure waveforms.
    Swamy G; Mukkamala R
    IEEE Trans Biomed Eng; 2008 May; 55(5):1521-9. PubMed ID: 18440898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro.
    Jennings LM; Butterfield M; Walker PG; Watterson KG; Fisher J
    J Heart Valve Dis; 2001 Mar; 10(2):269-75. PubMed ID: 11297215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological basis of flow dependence of Gorlin formula valve area in aortic stenosis: analysis using an hydraulic model of pulsatile flow.
    Rifkin RD
    J Heart Valve Dis; 2000 Nov; 9(6):740-51. PubMed ID: 11128779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D
    J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of valvular resistance, stroke work loss, and Gorlin valve area for quantification of aortic stenosis. An in vitro study in a pulsatile aortic flow model.
    Voelker W; Reul H; Nienhaus G; Stelzer T; Schmitz B; Steegers A; Karsch KR
    Circulation; 1995 Feb; 91(4):1196-204. PubMed ID: 7850959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of slice location on the accuracy of aortic regurgitation measurements with magnetic resonance phase velocity mapping.
    Chatzimavroudis GP; Walker PG; Oshinski JN; Franch RH; Pettigrew RI; Yoganathan AP
    Ann Biomed Eng; 1997; 25(4):644-52. PubMed ID: 9236977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated strategy for in vitro characterization of a bileaflet mechanical aortic valve.
    Susin FM; Espa S; Toninato R; Fortini S; Querzoli G
    Biomed Eng Online; 2017 Feb; 16(1):29. PubMed ID: 28209171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.