These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10360938)

  • 41. Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase.
    de Backer MM; McSweeney S; Lindley PF; Hough E
    Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1555-61. PubMed ID: 15333925
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amino acid discrimination by a highly differentiated metal center of an aminoacyl-tRNA synthetase.
    Zhang CM; Perona JJ; Hou YM
    Biochemistry; 2003 Sep; 42(37):10931-7. PubMed ID: 12974627
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The structure of the zinc sites of Escherichia coli DNA-dependent RNA polymerase.
    Wu FY; Huang WJ; Sinclair RB; Powers L
    J Biol Chem; 1992 Dec; 267(35):25560-7. PubMed ID: 1460051
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnesium acetate induces a conformational change in Escherichia coli primase.
    Urlacher TM; Griep MA
    Biochemistry; 1995 Dec; 34(51):16708-14. PubMed ID: 8527445
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of the magnesium ion binding site in the catalytic center of Escherichia coli primase by iron cleavage.
    Godson GN; Schoenich J; Sun W; Mustaev AA
    Biochemistry; 2000 Jan; 39(2):332-9. PubMed ID: 10630993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase.
    Murphy JE; Xu X; Kantrowitz ER
    J Biol Chem; 1993 Oct; 268(29):21497-500. PubMed ID: 8407998
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme.
    González JC; Peariso K; Penner-Hahn JE; Matthews RG
    Biochemistry; 1996 Sep; 35(38):12228-34. PubMed ID: 8823155
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of ribonucleoside triphosphates with the gene 4 primase of bacteriophage T7.
    Frick DN; Kumar S; Richardson CC
    J Biol Chem; 1999 Dec; 274(50):35899-907. PubMed ID: 10585475
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorescent labeling of cysteine 39 on Escherichia coli primase places the dye near an active site.
    Griep MA; Mesman TN
    Bioconjug Chem; 1995; 6(6):673-82. PubMed ID: 8608179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulation of RNA primer formation by Mn(II)-substituted T7 DNA primase.
    Ilic S; Akabayov SR; Froimovici R; Meiry R; Vilenchik D; Hernandez A; Arthanari H; Akabayov B
    Sci Rep; 2017 Jul; 7(1):5797. PubMed ID: 28724886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal-ligand interactions: an analysis of zinc binding groups using the Protein Data Bank.
    Kawai K; Nagata N
    Eur J Med Chem; 2012 May; 51():271-6. PubMed ID: 22405284
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-metal-Ion catalysis in adenylyl cyclase.
    Tesmer JJ; Sunahara RK; Johnson RA; Gosselin G; Gilman AG; Sprang SR
    Science; 1999 Jul; 285(5428):756-60. PubMed ID: 10427002
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the metallocenter of rabbit skeletal muscle AMP deaminase. A new model for substrate interactions at a dinuclear cocatalytic Zn site.
    Martini D; Ranieri-Raggi M; Sabbatini AR; Moir AJ; Polizzi E; Mangani S; Raggi A
    Biochim Biophys Acta; 2007 Dec; 1774(12):1508-18. PubMed ID: 17991449
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies of the functional topography of the catalytic center of Escherichia coli primase.
    Mustaev AA; Godson GN
    J Biol Chem; 1995 Jun; 270(26):15711-8. PubMed ID: 7541046
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural studies on the active site of Escherichia coli RNA polymerase. 1. Interaction of metals on the i and i + 1 sites.
    Chuknyisky PP; Rifkind JM; Tarien E; Beal RB; Eichhorn GL
    Biochemistry; 1990 Jun; 29(25):5987-94. PubMed ID: 2166569
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extended X-ray absorption fine structure studies on the iron-containing subunit of ribonucleotide reductase from Escherichia coli.
    Bunker G; Petersson L; Sjöberg BM; Sahlin M; Chance M; Chance B; Ehrenberg A
    Biochemistry; 1987 Jul; 26(15):4708-16. PubMed ID: 3311152
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An x-ray absorption study of the iron site in bacterial photosynthetic reaction centers.
    Bunker G; Stern EA; Blankenship RE; Parson WW
    Biophys J; 1982 Feb; 37(2):539-51. PubMed ID: 6977382
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence from extended X-ray absorption fine structure and site-specific mutagenesis for zinc fingers in UvrA protein of Escherichia coli.
    Navaratnam S; Myles GM; Strange RW; Sancar A
    J Biol Chem; 1989 Sep; 264(27):16067-71. PubMed ID: 2550431
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ElaC encodes a novel binuclear zinc phosphodiesterase.
    Vogel A; Schilling O; Niecke M; Bettmer J; Meyer-Klaucke W
    J Biol Chem; 2002 Aug; 277(32):29078-85. PubMed ID: 12029081
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EXAFS reveals a structural zinc binding site in the bovine NADH-Q oxidoreductase.
    Giachini L; Francia F; Boscherini F; Pacelli C; Cocco T; Papa S; Venturoli G
    FEBS Lett; 2007 Dec; 581(29):5645-8. PubMed ID: 18022397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.