These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 10360942)
1. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation. Massiah MA; Ko YH; Pedersen PL; Mildvan AS Biochemistry; 1999 Jun; 38(23):7453-61. PubMed ID: 10360942 [TBL] [Abstract][Full Text] [Related]
2. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Du K; Sharma M; Lukacs GL Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635 [TBL] [Abstract][Full Text] [Related]
3. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6. Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574 [TBL] [Abstract][Full Text] [Related]
4. Misfolding of the cystic fibrosis transmembrane conductance regulator and disease. Cheung JC; Deber CM Biochemistry; 2008 Feb; 47(6):1465-73. PubMed ID: 18193900 [TBL] [Abstract][Full Text] [Related]
5. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin. Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885 [TBL] [Abstract][Full Text] [Related]
6. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin. Wehbi H; Rath A; Glibowicka M; Deber CM Biochemistry; 2007 Jun; 46(24):7099-106. PubMed ID: 17516627 [TBL] [Abstract][Full Text] [Related]
7. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone. Scott-Ward TS; Amaral MD FEBS J; 2009 Dec; 276(23):7097-109. PubMed ID: 19878303 [TBL] [Abstract][Full Text] [Related]
8. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region. Lu NT; Pedersen PL Arch Biochem Biophys; 2000 Mar; 375(1):7-20. PubMed ID: 10683244 [TBL] [Abstract][Full Text] [Related]
9. Correction of the Delta phe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine. Robert R; Carlile GW; Liao J; Balghi H; Lesimple P; Liu N; Kus B; Rotin D; Wilke M; de Jonge HR; Scholte BJ; Thomas DY; Hanrahan JW Mol Pharmacol; 2010 Jun; 77(6):922-30. PubMed ID: 20200141 [TBL] [Abstract][Full Text] [Related]
10. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2009 Oct; 48(41):9882-90. PubMed ID: 19761259 [TBL] [Abstract][Full Text] [Related]
11. Solution structure of the first and second transmembrane segments of the mitochondrial oxoglutarate carrier. Castiglione-Morelli MA; Ostuni A; Pepe A; Lauria G; Palmieri F; Bisaccia F Mol Membr Biol; 2004; 21(5):297-305. PubMed ID: 15513737 [TBL] [Abstract][Full Text] [Related]
12. Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation. Cormet-Boyaka E; Jablonsky M; Naren AP; Jackson PL; Muccio DD; Kirk KL Proc Natl Acad Sci U S A; 2004 May; 101(21):8221-6. PubMed ID: 15141088 [TBL] [Abstract][Full Text] [Related]
13. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations. Choi MY; Cardarelli L; Therien AG; Deber CM Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503 [TBL] [Abstract][Full Text] [Related]
14. Solution structure and function in trifluoroethanol of PP-50, an ATP-binding peptide from F1ATPase. Chuang WJ; Abeygunawardana C; Gittis AG; Pedersen PL; Mildvan AS Arch Biochem Biophys; 1995 May; 319(1):110-22. PubMed ID: 7771774 [TBL] [Abstract][Full Text] [Related]
15. Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. Lewis HA; Wang C; Zhao X; Hamuro Y; Conners K; Kearins MC; Lu F; Sauder JM; Molnar KS; Coales SJ; Maloney PC; Guggino WB; Wetmore DR; Weber PC; Hunt JF J Mol Biol; 2010 Feb; 396(2):406-30. PubMed ID: 19944699 [TBL] [Abstract][Full Text] [Related]
16. Estimating the relative populations of 3(10)-helix and alpha-helix in Ala-rich peptides: a hydrogen exchange and high field NMR study. Millhauser GL; Stenland CJ; Hanson P; Bolin KA; van de Ven FJ J Mol Biol; 1997 Apr; 267(4):963-74. PubMed ID: 9135124 [TBL] [Abstract][Full Text] [Related]
17. Domain interdependence in the biosynthetic assembly of CFTR. Cui L; Aleksandrov L; Chang XB; Hou YX; He L; Hegedus T; Gentzsch M; Aleksandrov A; Balch WE; Riordan JR J Mol Biol; 2007 Jan; 365(4):981-94. PubMed ID: 17113596 [TBL] [Abstract][Full Text] [Related]
18. A peptide corresponding to residues Asp177 to Asn208 of human cyclin A forms an alpha-helix. Fan JS; Cheng HC; Zhang M Biochem Biophys Res Commun; 1998 Dec; 253(3):621-7. PubMed ID: 9918778 [TBL] [Abstract][Full Text] [Related]
19. Local interactions drive the formation of nonnative structure in the denatured state of human alpha-lactalbumin: a high resolution structural characterization of a peptide model in aqueous solution. Demarest SJ; Hua Y; Raleigh DP Biochemistry; 1999 Jun; 38(22):7380-7. PubMed ID: 10353850 [TBL] [Abstract][Full Text] [Related]
20. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator. Namkung W; Kim KH; Lee MG Gastroenterology; 2005 Dec; 129(6):1979-90. PubMed ID: 16344066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]