These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
469 related articles for article (PubMed ID: 10360948)
1. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data. Voglino L; Simon SA; McIntosh TJ Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948 [TBL] [Abstract][Full Text] [Related]
2. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
3. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Powl AM; East JM; Lee AG Biochemistry; 2003 Dec; 42(48):14306-17. PubMed ID: 14640699 [TBL] [Abstract][Full Text] [Related]
4. Anionic phospholipids modulate peptide insertion into membranes. Liu LP; Deber CM Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930 [TBL] [Abstract][Full Text] [Related]
5. Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Ghosh AK; Rukmini R; Chattopadhyay A Biochemistry; 1997 Nov; 36(47):14291-305. PubMed ID: 9398147 [TBL] [Abstract][Full Text] [Related]
6. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Kaiser RD; London E Biochemistry; 1998 Jun; 37(22):8180-90. PubMed ID: 9609714 [TBL] [Abstract][Full Text] [Related]
7. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
8. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers. Raja MM; Kinne RK Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence. Soekarjo M; Eisenhawer M; Kuhn A; Vogel H Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578 [TBL] [Abstract][Full Text] [Related]
10. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
11. Depth profiles of pulmonary surfactant protein B in phosphatidylcholine bilayers, studied by fluorescence and electron spin resonance spectroscopy. Cruz A; Casals C; Plasencia I; Marsh D; Pérez-Gil J Biochemistry; 1998 Jun; 37(26):9488-96. PubMed ID: 9649332 [TBL] [Abstract][Full Text] [Related]
12. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase. Jittikoon J; East JM; Lee AG Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884 [TBL] [Abstract][Full Text] [Related]
13. Mode of insertion of the signal sequence of a bacterial precursor protein into phospholipid bilayers as revealed by cysteine-based site-directed spectroscopy. Keller RC; ten Berge D; Nouwen N; Snel MM; Tommassen J; Marsh D; de Kruijff B Biochemistry; 1996 Mar; 35(9):3063-71. PubMed ID: 8608147 [TBL] [Abstract][Full Text] [Related]
14. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes. Saleh MT; Ferguson J; Boggs JM; Gariépy J Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710 [TBL] [Abstract][Full Text] [Related]
15. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Ren J; Lew S; Wang J; London E Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543 [TBL] [Abstract][Full Text] [Related]
16. The orientation of nisin in membranes. Breukink E; van Kraaij C; van Dalen A; Demel RA; Siezen RJ; de Kruijff B; Kuipers OP Biochemistry; 1998 Jun; 37(22):8153-62. PubMed ID: 9609711 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence analysis of tryptophan-containing variants of the LamB signal sequence upon insertion into a lipid bilayer. McKnight CJ; Rafalski M; Gierasch LM Biochemistry; 1991 Jun; 30(25):6241-6. PubMed ID: 2059631 [TBL] [Abstract][Full Text] [Related]
18. Insight into the environment of tryptophan in a hydrophobic model peptide upon aggregation and interaction with lipid vesicles: a steady state and time resolved fluorescence study. Joseph M; Nagaraj R Indian J Biochem Biophys; 1998 Apr; 35(2):67-75. PubMed ID: 9753864 [TBL] [Abstract][Full Text] [Related]
19. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Johnson JE; Rao NM; Hui SW; Cornell RB Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334 [TBL] [Abstract][Full Text] [Related]
20. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase. Clark EH; East JM; Lee AG Biochemistry; 2003 Sep; 42(37):11065-73. PubMed ID: 12974643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]