These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10361611)

  • 1. Prostaglandin inhibition causes an increase in reactive hyperaemia after ischaemic exercise in human forearm.
    Naylor HL; Shoemaker JK; Brock RW; Hughson RL
    Clin Physiol; 1999 May; 19(3):211-20. PubMed ID: 10361611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ageing reduces nitric-oxide- and prostaglandin-mediated vasodilatation in exercising humans.
    Schrage WG; Eisenach JH; Joyner MJ
    J Physiol; 2007 Feb; 579(Pt 1):227-36. PubMed ID: 17138603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans.
    Schrage WG; Joyner MJ; Dinenno FA
    J Physiol; 2004 Jun; 557(Pt 2):599-611. PubMed ID: 15047770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of nitric oxide and prostaglandins to reactive hyperemia in human forearm.
    Engelke KA; Halliwill JR; Proctor DN; Dietz NM; Joyner MJ
    J Appl Physiol (1985); 1996 Oct; 81(4):1807-14. PubMed ID: 8904603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of prostaglandins to exercise-induced vasodilation in humans.
    Wilson JR; Kapoor SC
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H171-5. PubMed ID: 8342631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of myogenic relaxation, adenosine and prostaglandins in human forearm reactive hyperaemia.
    Carlsson I; Sollevi A; Wennmalm A
    J Physiol; 1987 Aug; 389():147-61. PubMed ID: 3681724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postexercise hypotension is not explained by a prostaglandin-dependent peripheral vasodilation.
    Lockwood JM; Pricher MP; Wilkins BW; Holowatz LA; Halliwill JR
    J Appl Physiol (1985); 2005 Feb; 98(2):447-53. PubMed ID: 15465887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation.
    Mortensen SP; Nyberg M; Thaning P; Saltin B; Hellsten Y
    Hypertension; 2009 Jun; 53(6):993-9. PubMed ID: 19433775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous prostaglandins as local regulators of blood flow in man: effect of indomethacin on reactive and functional hyperaemia.
    Kilbom A; Wennmalm A
    J Physiol; 1976 May; 257(1):109-21. PubMed ID: 948043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different prostaglandin synthesis inhibitors on post-occlusive blood flow in human forearm.
    Carlsson I; Wennmalm A
    Prostaglandins; 1983 Aug; 26(2):241-52. PubMed ID: 6417728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of ageing and indomethacin on forearm reactive hyperaemia in healthy adults.
    Taylor JL; Hines CN; Nicholson WT; Joyner MJ; Barnes JN
    Exp Physiol; 2014 Jun; 99(6):859-67. PubMed ID: 24706194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure of prostaglandins to modulate the time course of blood flow during dynamic forearm exercise in humans.
    Shoemaker JK; Naylor HL; Pozeg ZI; Hughson RL
    J Appl Physiol (1985); 1996 Oct; 81(4):1516-21. PubMed ID: 8904562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise.
    Schrage WG; Dietz NM; Joyner MJ
    J Appl Physiol (1985); 2006 May; 100(5):1506-12. PubMed ID: 16469932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of inhibition of ATP-sensitive potassium channels on metabolic vasodilation in the human forearm.
    Farouque HM; Meredith IT
    Clin Sci (Lond); 2003 Jan; 104(1):39-46. PubMed ID: 12519086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostanoids are not involved in postocclusive reactive hyperaemia in human skin.
    Hellmann M; Gaillard-Bigot F; Roustit M; Cracowski JL
    Fundam Clin Pharmacol; 2015 Oct; 29(5):510-6. PubMed ID: 26194355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of graded leg cycling on postischaemic forearm blood flow in healthy subjects.
    Charles M; Pichot V; Dauphinot V; Barthelemy JC; Denis C; Roche F; Costes F
    Clin Physiol Funct Imaging; 2008 Jan; 28(1):8-13. PubMed ID: 18005079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg.
    Mortensen SP; González-Alonso J; Damsgaard R; Saltin B; Hellsten Y
    J Physiol; 2007 Jun; 581(Pt 2):853-61. PubMed ID: 17347273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative contribution of vasodilator prostanoids and NO to metabolic vasodilation in the human forearm.
    Duffy SJ; New G; Tran BT; Harper RW; Meredith IT
    Am J Physiol; 1999 Feb; 276(2):H663-70. PubMed ID: 9950869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of prostaglandin and antioxidant availability in recovery from forearm ischemia-reperfusion injury in humans.
    Carter SE; Faulkner A; Rakobowchuk M
    J Hypertens; 2014 Feb; 32(2):339-51. PubMed ID: 24296519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise.
    Boushel R; Langberg H; Gemmer C; Olesen J; Crameri R; Scheede C; Sander M; Kjaer M
    J Physiol; 2002 Sep; 543(Pt 2):691-8. PubMed ID: 12205200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.