BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10362227)

  • 1. Quinolinic acid, alpha-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer.
    Iwahashi H; Kawamori H; Fukushima K
    Chem Biol Interact; 1999 Apr; 118(3):201-15. PubMed ID: 10362227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of some naturally occurring iron ion chelators on the formation of radicals in the reaction mixtures of rat liver microsomes with ADP, Fe and NADPH.
    Minakata K; Fukushima K; Nakamura M; Iwahashi H
    J Clin Biochem Nutr; 2011 Nov; 49(3):207-15. PubMed ID: 22128221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR).
    Fadda A; Barberis A; Sanna D
    Food Chem; 2018 Feb; 240():174-182. PubMed ID: 28946259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Baicalin inhibits the fenton reaction by enhancing electron transfer from Fe (2+) to dissolved oxygen.
    Nishizaki D; Iwahashi H
    Am J Chin Med; 2015; 43(1):87-101. PubMed ID: 25640849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of hydroxyl radical production rates in H2O2 solution under homogeneous catalysis of Fe3+ or Fe2+].
    Gao YX; Zhang Y; Yang M; Hu JY
    Huan Jing Ke Xue; 2006 Feb; 27(2):305-9. PubMed ID: 16686194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nitroxide Tempo inhibits hydroxyl radical production from the Fenton-like reaction of iron(II)-citrate with hydrogen peroxide.
    Shi F; Zhang P; Mao Y; Wang C; Zheng M; Zhao Z
    Biochem Biophys Res Commun; 2017 Jan; 483(1):159-164. PubMed ID: 28042034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picolinic acid blocks the neurotoxic but not the neuroexcitant properties of quinolinic acid in the rat brain: evidence from turning behaviour and tyrosine hydroxylase immunohistochemistry.
    Beninger RJ; Colton AM; Ingles JL; Jhamandas K; Boegman RJ
    Neuroscience; 1994 Aug; 61(3):603-12. PubMed ID: 7969932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of some naturally occurring iron ion chelators on in vitro superoxide radical formation.
    Hirai T; Fukushima K; Kumamoto K; Iwahashi H
    Biol Trace Elem Res; 2005; 108(1-3):77-85. PubMed ID: 16327062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of the hydroxyl radical oxygen in the Fenton reaction.
    Lloyd RV; Hanna PM; Mason RP
    Free Radic Biol Med; 1997; 22(5):885-8. PubMed ID: 9119257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of caffeic acid and its related catechols on hydroxyl radical formation by 3-hydroxyanthranilic acid, ferric chloride, and hydrogen peroxide.
    Iwahashi H; Ishii T; Sugata R; Kido R
    Arch Biochem Biophys; 1990 Jan; 276(1):242-7. PubMed ID: 2153363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotoxicity of quinolinic acid and its derivatives in hypoxic rat hippocampal slices.
    Schurr A; West CA; Rigor BM
    Brain Res; 1991 Dec; 568(1-2):199-204. PubMed ID: 1687668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron spin resonance estimation of hydroxyl radical scavenging capacity for lipophilic antioxidants.
    Cheng Z; Zhou H; Yin J; Yu L
    J Agric Food Chem; 2007 May; 55(9):3325-33. PubMed ID: 17381117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of fusaric acid and its derivative on the cardiovascular system].
    Furuta Y; Washizaki M
    Nihon Yakurigaku Zasshi; 1976 Mar; 72(2):139-44. PubMed ID: 987962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytotoxicity of fusaric acid and analogs to cotton.
    Stipanovic RD; Puckhaber LS; Liu J; Bell AA
    Toxicon; 2011 Jan; 57(1):176-8. PubMed ID: 20955724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex formation in aqueous solution and in the solid state of the potent insulin-enhancing V(IV)O2+ compounds formed by picolinate and quinolinate derivatives.
    Lodyga-Chruscinska E; Micera G; Garribba E
    Inorg Chem; 2011 Feb; 50(3):883-99. PubMed ID: 21226475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement by catechols of hydroxyl-radical formation in the presence of ferric ions and hydrogen peroxide.
    Iwahashi H; Morishita H; Ishii T; Sugata R; Kido R
    J Biochem; 1989 Mar; 105(3):429-34. PubMed ID: 2543661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The generation of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate complexes of ferrous ion.
    Biaglow JE; Kachur AV
    Radiat Res; 1997 Aug; 148(2):181-7. PubMed ID: 9254738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl radical generation by a light-dependent Fenton reaction.
    Van der Zee J; Krootjes BB; Chignell CF; Dubbelman TM; Van Steveninck J
    Free Radic Biol Med; 1993 Feb; 14(2):105-13. PubMed ID: 8381101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the Fusarium spp. mycotoxins fusaric acid and deoxynivalenol on the growth of Ruminococcus albus and Methanobrevibacter ruminantium.
    May HD; Wu Q; Blake CK
    Can J Microbiol; 2000 Aug; 46(8):692-9. PubMed ID: 10941514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent quantification of quinolinic, picolinic, and nicotinic acids using electron-capture negative-ion gas chromatography-mass spectrometry.
    Smythe GA; Braga O; Brew BJ; Grant RS; Guillemin GJ; Kerr SJ; Walker DW
    Anal Biochem; 2002 Feb; 301(1):21-6. PubMed ID: 11811963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.