BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10362532)

  • 21. Interaction of nucleoredoxin with protein phosphatase 2A.
    Lechward K; Sugajska E; de Baere I; Goris J; Hemmings BA; Zolnierowicz S
    FEBS Lett; 2006 Jun; 580(15):3631-7. PubMed ID: 16764867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphatase 2A is involved in endothelial cell microtubule remodeling and barrier regulation.
    Tar K; Birukova AA; Csortos C; Bakó E; Garcia JG; Verin AD
    J Cell Biochem; 2004 Jun; 92(3):534-46. PubMed ID: 15156565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular identification of I1PP2A, a novel potent heat-stable inhibitor protein of protein phosphatase 2A.
    Li M; Makkinje A; Damuni Z
    Biochemistry; 1996 Jun; 35(22):6998-7002. PubMed ID: 8679524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insulin-like growth factor I controls a mutually exclusive association of RACK1 with protein phosphatase 2A and beta1 integrin to promote cell migration.
    Kiely PA; O'Gorman D; Luong K; Ron D; O'Connor R
    Mol Cell Biol; 2006 Jun; 26(11):4041-51. PubMed ID: 16705158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein phosphatase 2A modulates the proliferation of human multiple myeloma cells via regulation of the production of reactive oxygen intermediates and anti-apoptotic factors.
    Kang HS; Choi I
    Cell Immunol; 2001 Oct; 213(1):34-44. PubMed ID: 11747354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 19-epi-okadaic acid, a novel protein phosphatase inhibitor with enhanced selectivity.
    Cruz PG; Daranas AH; Fernández JJ; Norte M
    Org Lett; 2007 Aug; 9(16):3045-8. PubMed ID: 17630753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of okadaic acid to elucidate the intracellular role(s) of protein phosphatase 2A: lessons from the mast cell model system.
    Boudreau RT; Hoskin DW
    Int Immunopharmacol; 2005 Sep; 5(10):1507-18. PubMed ID: 16023602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly acidic C-terminal domain of pp32 is required for the interaction with histone chaperone, TAF-Ibeta.
    Lee IS; Oh SM; Kim SM; Lee DS; Seo SB
    Biol Pharm Bull; 2006 Dec; 29(12):2395-8. PubMed ID: 17142970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Template activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template.
    Okuwaki M; Nagata K
    J Biol Chem; 1998 Dec; 273(51):34511-8. PubMed ID: 9852120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histone H1 chaperone activity of TAF-I is regulated by its subtype-dependent intramolecular interaction.
    Kajitani K; Kato K; Nagata K
    Genes Cells; 2017 Apr; 22(4):334-347. PubMed ID: 28251751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The structure and regulatory mechanisms of protein phosphatase 2A].
    Usui H; Nishito Y
    Tanpakushitsu Kakusan Koso; 1998 Jun; 43(8 Suppl):945-51. PubMed ID: 9655950
    [No Abstract]   [Full Text] [Related]  

  • 32. Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster.
    Nowak SJ; Pai CY; Corces VG
    Mol Cell Biol; 2003 Sep; 23(17):6129-38. PubMed ID: 12917335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A.
    Li M; Makkinje A; Damuni Z
    J Biol Chem; 1996 May; 271(19):11059-62. PubMed ID: 8626647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histone- and chromatin-binding activity of template activating factor-I.
    Matsumoto K; Nagata K; Okuwaki M; Tsujimoto M
    FEBS Lett; 1999 Dec; 463(3):285-8. PubMed ID: 10606739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A signaling role of histone-binding proteins and INHAT subunits pp32 and Set/TAF-Ibeta in integrating chromatin hypoacetylation and transcriptional repression.
    Kutney SN; Hong R; Macfarlan T; Chakravarti D
    J Biol Chem; 2004 Jul; 279(29):30850-5. PubMed ID: 15136563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction.
    Karetsou Z; Emmanouilidou A; Sanidas I; Liokatis S; Nikolakaki E; Politou AS; Papamarcaki T
    BMC Biochem; 2009 Apr; 10():10. PubMed ID: 19358706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein phosphatase 2A and phosphoprotein SET regulate androgen production by P450c17.
    Pandey AV; Mellon SH; Miller WL
    J Biol Chem; 2003 Jan; 278(5):2837-44. PubMed ID: 12444089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney.
    Li M; Guo H; Damuni Z
    Biochemistry; 1995 Feb; 34(6):1988-96. PubMed ID: 7531497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NAP-I is a functional homologue of TAF-I that is required for replication and transcription of the adenovirus genome in a chromatin-like structure.
    Kawase H; Okuwaki M; Miyaji M; Ohba R; Handa H; Ishimi Y; Fujii-Nakata T; Kikuchi A; Nagata K
    Genes Cells; 1996 Dec; 1(12):1045-56. PubMed ID: 9077453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ternary complex formation between DNA-adenovirus core protein VII and TAF-Ibeta/SET, an acidic molecular chaperone.
    Haruki H; Gyurcsik B; Okuwaki M; Nagata K
    FEBS Lett; 2003 Dec; 555(3):521-7. PubMed ID: 14675767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.