BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10362592)

  • 1. Regulation of total mitochondrial Ca2+ in perfused liver is independent of the permeability transition pore.
    Eriksson O; Pollesello P; Geimonen E
    Am J Physiol; 1999 Jun; 276(6):C1297-302. PubMed ID: 10362592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnesium ion modulates the sensitivity of the mitochondrial permeability transition pore to cyclosporin A and ADP.
    Novgorodov SA; Gudz TI; Brierley GP; Pfeiffer DR
    Arch Biochem Biophys; 1994 Jun; 311(2):219-28. PubMed ID: 8203884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The permeability transition pore opening in intact mitochondria and submitochondrial particles.
    de Macedo DV; da Costa C; Pereira-Da-Silva L
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Sep; 118(1):209-16. PubMed ID: 9418011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with alpha-adrenergic agonists and with glucagon.
    Taylor WM; Prpić V; Exton JH; Bygrave FL
    Biochem J; 1980 May; 188(2):443-50. PubMed ID: 7396872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further characterization of the events involved in mitochondrial Ca2+ release and pore formation by prooxidants.
    Weis M; Kass GE; Orrenius S
    Biochem Pharmacol; 1994 Jun; 47(12):2147-56. PubMed ID: 7518235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that glucagon acts on the liver to decrease mitochondrial calcium stores.
    Baddams HM; Chang LB; Barritt GJ
    Biochem J; 1983 Jan; 210(1):73-7. PubMed ID: 6405743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclosporin A-insensitive permeability transition in brain mitochondria: inhibition by 2-aminoethoxydiphenyl borate.
    Chinopoulos C; Starkov AA; Fiskum G
    J Biol Chem; 2003 Jul; 278(30):27382-9. PubMed ID: 12750371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria.
    Azarashvili T; Grachev D; Krestinina O; Evtodienko Y; Yurkov I; Papadopoulos V; Reiser G
    Cell Calcium; 2007 Jul; 42(1):27-39. PubMed ID: 17174393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of adenosine nucleotide translocase (ANT) proline isomerization on Ca2+-induced cysteine relative mobility/mitochondrial permeability transition pore.
    Pestana CR; Silva CH; Uyemura SA; Santos AC; Curti C
    J Bioenerg Biomembr; 2010 Aug; 42(4):329-35. PubMed ID: 20614171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial permeability transition-pore inhibition enhances functional recovery after long-time hypothermic heart preservation.
    Rajesh KG; Sasaguri S; Ryoko S; Maeda H
    Transplantation; 2003 Nov; 76(9):1314-20. PubMed ID: 14627909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability transition in rat liver mitochondria is modulated by the ATP-Mg/Pi carrier.
    Hagen T; Lagace CJ; Modica-Napolitano JS; Aprille JR
    Am J Physiol Gastrointest Liver Physiol; 2003 Aug; 285(2):G274-81. PubMed ID: 12851217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gliotoxin induces Mg2+ efflux from intact brain mitochondria.
    Salvi M; Bozac A; Toninello A
    Neurochem Int; 2004 Oct; 45(5):759-64. PubMed ID: 15234120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria buffer non-toxic calcium loads and release calcium through the mitochondrial permeability transition pore and sodium/calcium exchanger in rat basal forebrain neurons.
    Murchison D; Griffith WH
    Brain Res; 2000 Jan; 854(1-2):139-51. PubMed ID: 10784115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+)-loading modulates potencies of cyclosporin A, Mg2+ and ADP to recouple permeabilized rat liver mitochondria.
    Andreyev AYu ; Mikhaylova LM; Starkov AA; Kushnareva YuE
    Biochem Mol Biol Int; 1994 Sep; 34(2):367-73. PubMed ID: 7849648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible mechanism for formation and regulation of the palmitate-induced cyclosporin A-insensitive mitochondrial pore.
    Belosludtsev KN; Belosludtseva NV; Mironova GD
    Biochemistry (Mosc); 2005 Jul; 70(7):815-21. PubMed ID: 16097947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permeability transition pore regulates both mitochondrial membrane potential and agonist-evoked Ca2+ signals in oligodendrocyte progenitors.
    Smaili SS; Russell JT
    Cell Calcium; 1999; 26(3-4):121-30. PubMed ID: 10598276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria.
    Jung DW; Bradshaw PC; Pfeiffer DR
    J Biol Chem; 1997 Aug; 272(34):21104-12. PubMed ID: 9261114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenine nucleotide transport in hepatoma mitochondria. Characterization of factors influencing the kinetics of ADP and ATP uptake.
    Chan SH; Barbour RL
    Biochim Biophys Acta; 1983 Apr; 723(1):104-13. PubMed ID: 6830767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of Ca2+-dependent cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in media of varying ionic strength.
    Dubinin MV; Vedernikov AA; Khoroshavina EI; Samartsev VN
    Biochemistry (Mosc); 2014 Jun; 79(6):571-6. PubMed ID: 25100016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.