These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 10362670)
1. Further evidence for the selective disruption of intercellular communication by heptanol. Christ GJ; Spektor M; Brink PR; Barr L Am J Physiol; 1999 Jun; 276(6):H1911-7. PubMed ID: 10362670 [TBL] [Abstract][Full Text] [Related]
2. Gap junctions in isolated rat aorta: evidence for contractile responses that exhibit a differential dependence on intercellular communication. Christ GJ; Brink PR Braz J Med Biol Res; 2000 Apr; 33(4):423-9. PubMed ID: 10775307 [TBL] [Abstract][Full Text] [Related]
3. Gap junctions modulate tissue contractility and alpha 1 adrenergic agonist efficacy in isolated rat aorta. Christ GJ; Brink PR; Zhao W; Moss J; Gondré CM; Roy C; Spray DC J Pharmacol Exp Ther; 1993 Aug; 266(2):1054-65. PubMed ID: 8102641 [TBL] [Abstract][Full Text] [Related]
4. Increased dilator response to heptanol and octanol in aorta from DOCA-salt-hypertensive rats. Leite R; Webb RC Pharmacology; 2001 Jan; 62(1):29-35. PubMed ID: 11150920 [TBL] [Abstract][Full Text] [Related]
5. The effects of gap junction modulators on the rhythmic contractions in aortas isolated from rats subjected with sinoaortic denervation. Rocha ML; Araujo AV; Andrade FA; Bendhack LM Biol Pharm Bull; 2011; 34(11):1690-5. PubMed ID: 22040881 [TBL] [Abstract][Full Text] [Related]
6. Modulation of alpha 1-adrenergic contractility in isolated vascular tissues by heptanol: a functional demonstration of the potential importance of intercellular communication to vascular response generation. Christ GJ Life Sci; 1995; 56(10):709-21. PubMed ID: 7885187 [TBL] [Abstract][Full Text] [Related]
7. Intercellular communication through gap junctions: a potential role in pharmacomechanical coupling and syncytial tissue contraction in vascular smooth muscle isolated from the human corpus cavernosum. Christ GJ; Moreno AP; Parker ME; Gondre CM; Valcic M; Melman A; Spray DC Life Sci; 1991; 49(24):PL195-200. PubMed ID: 1943478 [TBL] [Abstract][Full Text] [Related]
8. Peroxynitrite-induced relaxation in isolated rat aortic rings and mechanisms of action. Li J; Li W; Altura BT; Altura BM Toxicol Appl Pharmacol; 2005 Dec; 209(3):269-76. PubMed ID: 15927224 [TBL] [Abstract][Full Text] [Related]
9. Junctional and nonjunctional effects of heptanol and glycyrrhetinic acid derivates in rat mesenteric small arteries. Matchkov VV; Rahman A; Peng H; Nilsson H; Aalkjaer C Br J Pharmacol; 2004 Jul; 142(6):961-72. PubMed ID: 15210581 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of nitric oxide-induced vasodilation by gap junction inhibitors: a potential role for a cGMP-independent nitric oxide pathway. Javid PJ; Watts SW; Webb RC J Vasc Res; 1996; 33(5):395-404. PubMed ID: 8862145 [TBL] [Abstract][Full Text] [Related]
11. Inhibitors of gap junctions attenuate myogenic tone in cerebral arteries. Lagaud G; Karicheti V; Knot HJ; Christ GJ; Laher I Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2177-86. PubMed ID: 12427590 [TBL] [Abstract][Full Text] [Related]
12. Effects of acute and chronic cadmium administration on the vascular reactivity of rat aorta. Tzotzes V; Tzilalis V; Giannakakis S; Saranteas T; Papas A; Mourouzis I; Mourouzis C; Zarros A; Pantos C; Cokkinos D; Carageorgiou H Biometals; 2007 Feb; 20(1):83-91. PubMed ID: 16802071 [TBL] [Abstract][Full Text] [Related]
14. Reversible inhibition of gap junctional intercellular communication, synchronous contraction, and synchronism of intracellular Ca2+ fluctuation in cultured neonatal rat cardiac myocytes by heptanol. Kimura H; Oyamada Y; Ohshika H; Mori M; Oyamada M Exp Cell Res; 1995 Oct; 220(2):348-56. PubMed ID: 7556443 [TBL] [Abstract][Full Text] [Related]
15. Characterization of four different effects elicited by H2O2 in rat aorta. Gil-Longo J; González-Vázquez C Vascul Pharmacol; 2005 Aug; 43(2):128-38. PubMed ID: 15994130 [TBL] [Abstract][Full Text] [Related]
16. Inhibitory effect of gap junction blockers on cerebral vasospasm. Hong T; Wang Y; Wang HT; Wang H J Neurosurg; 2008 Mar; 108(3):551-7. PubMed ID: 18312103 [TBL] [Abstract][Full Text] [Related]
17. Halothane and isoflurane preferentially inhibit prostanoid-induced vasoconstriction of rat aorta. Yamamoto M; Hatano Y; Kakuyama M; Hirakata H; Toda H; Seo N; Nishiwada M; Nakamura K; Mori K Can J Anaesth; 1994 Oct; 41(10):991-5. PubMed ID: 8001219 [TBL] [Abstract][Full Text] [Related]
18. Effect of gap junction uncoupler heptanol on resistance arteries reactivity in experimental models of diabetes, hyperlipemia and hyperlipemia-diabetes. Georgescu A; Alexandru N; Constantinescu E; Popov D Vascul Pharmacol; 2006 Jun; 44(6):513-8. PubMed ID: 16651032 [TBL] [Abstract][Full Text] [Related]
19. Effects of anethole and structural analogues on the contractility of rat isolated aorta: Involvement of voltage-dependent Ca2+-channels. Soares PM; Lima RF; de Freitas Pires A; Souza EP; Assreuy AM; Criddle DN Life Sci; 2007 Sep; 81(13):1085-93. PubMed ID: 17869309 [TBL] [Abstract][Full Text] [Related]
20. Differential modulation of bradykinin-induced relaxation of endothelin-1 and phenylephrine contractions of rat aorta by antioxidants. Anozie O; Ross R; Oyekan AO; Yakubu MA Acta Pharmacol Sin; 2007 Oct; 28(10):1566-72. PubMed ID: 17883941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]