These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10362736)

  • 21. Chronic hyponatremia exacerbates ammonia-induced brain edema in rats after portacaval anastomosis.
    Córdoba J; Gottstein J; Blei AT
    J Hepatol; 1998 Oct; 29(4):589-94. PubMed ID: 9824268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia.
    Holliday MA; Kalayci MN; Harrah J
    J Clin Invest; 1968 Aug; 47(8):1916-28. PubMed ID: 5666118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myoinositol administration improves survival and reduces myelinolysis after rapid correction of chronic hyponatremia in rats.
    Silver SM; Schroeder BM; Sterns RH; Rojiani AM
    J Neuropathol Exp Neurol; 2006 Jan; 65(1):37-44. PubMed ID: 16410747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyponatremia with hypoxia: effects on brain adaptation, perfusion, and histology in rodents.
    Ayus JC; Armstrong D; Arieff AI
    Kidney Int; 2006 Apr; 69(8):1319-25. PubMed ID: 16614721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protective effect of dexamethasone on osmotic-induced demyelination in rats.
    Sugimura Y; Murase T; Takefuji S; Hayasaka S; Takagishi Y; Oiso Y; Murata Y
    Exp Neurol; 2005 Mar; 192(1):178-83. PubMed ID: 15698632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of experimental acute hyponatremia on severe traumatic brain injury in rats: influences on injuries, permeability of blood-brain barrier, ultrastructural features, and aquaporin-4 expression.
    Ke C; Poon WS; Ng HK; Lai FM; Tang NL; Pang JC
    Exp Neurol; 2002 Dec; 178(2):194-206. PubMed ID: 12504879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Evaluation of the changes in intracranial water, sodium, phosphorus metabolites and intracellular cerebral pH in rats with acute dilutional hyponatremia].
    Uchida K; Takahashi N; Sumikura T; Yura T; Bandai H; Miki S; Yuasa S; Takamitsu Y; Matsuo H
    Nihon Jinzo Gakkai Shi; 1990 Nov; 32(11):1169-77. PubMed ID: 2082051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BSC1 inhibition complements effects of vasopressin V2 receptor antagonist on hyponatremia in SIADH rats.
    Kazama I; Hatano R; Michimata M; Suzuki K; Arata T; Suzuki M; Miyama N; Sato A; Satomi S; Ejima Y; Sasaki S; Matsubara M
    Kidney Int; 2005 May; 67(5):1855-67. PubMed ID: 15840033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The electrolytes in hyponatremia.
    Graber M; Corish D
    Am J Kidney Dis; 1991 Nov; 18(5):527-45. PubMed ID: 1835285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of polyols in cerebral cell volume regulation in hypernatremic and hyponatremic states.
    Trachtman H; Futterweit S; Hammer E; Siegel TW; Oates P
    Life Sci; 1991; 49(9):677-88. PubMed ID: 1907705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypoxic and ischemic hypoxia exacerbate brain injury associated with metabolic encephalopathy in laboratory animals.
    Vexler ZS; Ayus JC; Roberts TP; Fraser CL; Kucharczyk J; Arieff AI
    J Clin Invest; 1994 Jan; 93(1):256-64. PubMed ID: 8282795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation ranges and patterns of adaptation to hyponatremia by cells of various organs and tissues of vertebrate animals.
    Martemyanov VI; Poddubnaya NY
    Bratisl Lek Listy; 2020; 121(3):218-224. PubMed ID: 32115980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of dilutional hyponatremia on brain organic osmolytes and water content in patients with cirrhosis.
    Restuccia T; Gómez-Ansón B; Guevara M; Alessandria C; Torre A; Alayrach ME; Terra C; Martín M; Castellví M; Rami L; Sainz A; Ginès P; Arroyo V
    Hepatology; 2004 Jun; 39(6):1613-22. PubMed ID: 15185302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation to acute and chronic hyponatremia: implications for symptomatology, diagnosis, and therapy.
    Verbalis JG
    Semin Nephrol; 1998 Jan; 18(1):3-19. PubMed ID: 9459285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osmotic regulation of plasma vasopressin and oxytocin after sustained hyponatremia.
    Verbalis JG; Baldwin EF; Robinson AG
    Am J Physiol; 1986 Mar; 250(3 Pt 2):R444-51. PubMed ID: 3953853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of organic osmolytes in myelinolysis. A topographic study in rats after rapid correction of hyponatremia.
    Lien YH
    J Clin Invest; 1995 Apr; 95(4):1579-86. PubMed ID: 7706464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of acute and chronic hyponatremia on brain buffering in rats.
    Adler S; Verbalis JG; Williams D
    Am J Physiol; 1993 Jun; 264(6 Pt 2):F968-74. PubMed ID: 8322900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel vasopressin dual V1A/V2 receptor antagonist, conivaptan hydrochloride, improves hyponatremia in rats with syndrome of inappropriate secretion of antidiuretic hormone (SIADH).
    Wada K; Matsukawa U; Fujimori A; Arai Y; Sudoh K; Sasamata M; Miyata K
    Biol Pharm Bull; 2007 Jan; 30(1):91-5. PubMed ID: 17202666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Therapeutic recommendations for management of severe hyponatremia: current concepts on pathogenesis and prevention of neurologic complications.
    Soupart A; Decaux G
    Clin Nephrol; 1996 Sep; 46(3):149-69. PubMed ID: 8879850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neonatal exogenous testosterone modifies sex difference in radial arm and Morris water maze performance in prepubescent and adult rats.
    Roof RL
    Behav Brain Res; 1993 Feb; 53(1-2):1-10. PubMed ID: 8466654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.