BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10362740)

  • 1. Gut vagal afferent lesions increase meal size but do not block gastric preload-induced feeding suppression.
    Schwartz GJ; Salorio CF; Skoglund C; Moran TH
    Am J Physiol; 1999 Jun; 276(6):R1623-9. PubMed ID: 10362740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subdiaphragmatic vagal deafferentation fails to block feeding-suppressive effects of LPS and IL-1 beta in rats.
    Schwartz GJ; Plata-Salamán CR; Langhans W
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R1193-8. PubMed ID: 9321903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subdiaphragmatic vagal deafferentation fails to block the anorectic effect of hydroxycitrate.
    Leonhardt M; Hrupka BJ; Langhans W
    Physiol Behav; 2004 Sep; 82(2-3):263-8. PubMed ID: 15276787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central melanocortin receptor agonist reduces spontaneous and scheduled meal size but does not augment duodenal preload-induced feeding inhibition.
    Azzara AV; Sokolnicki JP; Schwartz GJ
    Physiol Behav; 2002 Nov; 77(2-3):411-6. PubMed ID: 12419417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Load-sensitive rat gastric vagal afferents encode volume but not gastric nutrients.
    Mathis C; Moran TH; Schwartz GJ
    Am J Physiol; 1998 Feb; 274(2):R280-6. PubMed ID: 9486282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat.
    Arnold M; Mura A; Langhans W; Geary N
    J Neurosci; 2006 Oct; 26(43):11052-60. PubMed ID: 17065447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subdiaphragmatic vagal deafferentation affects body weight gain and glucose metabolism in obese male Zucker (fa/fa) rats.
    Ferrari B; Arnold M; Carr RD; Langhans W; Pacini G; Bodvarsdóttir TB; Gram DX
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R1027-34. PubMed ID: 15919730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ontogeny of the postingestive inhibitory effect of peptone in rats.
    Weller A; Tsitolovskya L
    Physiol Behav; 2004 Aug; 82(1):11-6. PubMed ID: 15234583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms.
    Rüttimann EB; Arnold M; Hillebrand JJ; Geary N; Langhans W
    Endocrinology; 2009 Mar; 150(3):1174-81. PubMed ID: 18948395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraperitoneal injections of low doses of C75 elicit a behaviorally specific and vagal afferent-independent inhibition of eating in rats.
    Mansouri A; Aja S; Moran TH; Ronnett G; Kuhajda FP; Arnold M; Geary N; Langhans W; Leonhardt M
    Am J Physiol Regul Integr Comp Physiol; 2008 Sep; 295(3):R799-805. PubMed ID: 18667714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vagal afferents mediate the feeding response to mercaptoacetate but not to the beta (3) adrenergic receptor agonist CL 316,243.
    Brandt K; Arnold M; Geary N; Langhans W; Leonhardt M
    Neurosci Lett; 2007 Jan; 411(2):104-7. PubMed ID: 17112664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats.
    Shen L; Wang DQ; Lo CC; Arnold M; Tso P; Woods SC; Liu M
    Physiol Behav; 2015 Dec; 152(Pt A):62-7. PubMed ID: 26384952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective vagal rhizotomies: a new dorsal surgical approach used for intestinal deafferentations.
    Walls EK; Wang FB; Holst MC; Phillips RJ; Voreis JS; Perkins AR; Pollard LE; Powley TL
    Am J Physiol; 1995 Nov; 269(5 Pt 2):R1279-88. PubMed ID: 7503320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1993 Oct; 265(4 Pt 2):R872-6. PubMed ID: 8238459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats.
    Bugajski AJ; Gil K; Ziomber A; Zurowski D; Zaraska W; Thor PJ
    J Physiol Pharmacol; 2007 Mar; 58 Suppl 1():5-12. PubMed ID: 17443024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vagal afferents mediate early satiation and prevent flavour avoidance learning in response to intraperitoneally infused exendin-4.
    Labouesse MA; Stadlbauer U; Weber E; Arnold M; Langhans W; Pacheco-López G
    J Neuroendocrinol; 2012 Dec; 24(12):1505-16. PubMed ID: 22827554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duodenal nutrient exposure elicits nutrient-specific gut motility and vagal afferent signals in rat.
    Schwartz GJ; Moran TH
    Am J Physiol; 1998 May; 274(5):R1236-42. PubMed ID: 9644035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastric volume rather than nutrient content inhibits food intake.
    Phillips RJ; Powley TL
    Am J Physiol; 1996 Sep; 271(3 Pt 2):R766-9. PubMed ID: 8853402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intragastric infusion of pea-protein hydrolysate reduces test-meal size in rats more than pea protein.
    Häberer D; Tasker M; Foltz M; Geary N; Westerterp M; Langhans W
    Physiol Behav; 2011 Oct; 104(5):1041-7. PubMed ID: 21763707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of meal size by intestinal nutrients is eliminated by celiac vagal deafferentation.
    Walls EK; Phillips RJ; Wang FB; Holst MC; Powley TL
    Am J Physiol; 1995 Dec; 269(6 Pt 2):R1410-9. PubMed ID: 8594944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.