These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 10363024)

  • 21. Mutagenesis and repair of DNA damage caused by nitrogen mustard, N,N'-bis(2-chloroethyl)-N-nitrosourea (BCNU), streptozotocin, and mitomycin C in E. coli.
    Fram RJ; Sullivan J; Marinus MG
    Mutat Res; 1986 Nov; 166(3):299-42. PubMed ID: 2946949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenine-containing DNA-DNA cross-links of antitumor nitrogen mustards.
    Balcome S; Park S; Quirk Dorr DR; Hafner L; Phillips L; Tretyakova N
    Chem Res Toxicol; 2004 Jul; 17(7):950-62. PubMed ID: 15257621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excision repair of 2,5-diaziridinyl-1,4-benzoquinone (DZQ)-DNA adduct by bacterial and mammalian 3-methyladenine-DNA glycosylases.
    Lee CS
    Mol Cells; 2000 Dec; 10(6):723-7. PubMed ID: 11211879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.
    Harrison L; Hatahet Z; Wallace SS
    J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The sequence specificity of alkylation for a series of benzoic acid mustard and imidazole-containing distamycin analogues: the importance of local sequence conformation.
    Wyatt MD; Lee M; Hartley JA
    Nucleic Acids Res; 1997 Jun; 25(12):2359-64. PubMed ID: 9171086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymology of the repair of etheno adducts in mammalian cells and in Escherichia coli.
    Saparbaev M; Laval J
    IARC Sci Publ; 1999; (150):249-61. PubMed ID: 10626225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alkylation specificity for a series of distamycin analogues that tether chlorambucil.
    Wyatt MD; Lee M; Hartley JA
    Anticancer Drug Des; 1997 Jan; 12(1):49-60. PubMed ID: 9051113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excision of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli.
    Bjelland S; Bjørås M; Seeberg E
    Nucleic Acids Res; 1993 May; 21(9):2045-9. PubMed ID: 8502545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloroethylnitrosourea-derived ethano cytosine and adenine adducts are substrates for Escherichia coli glycosylases excising analogous etheno adducts.
    Guliaev AB; Singer B; Hang B
    DNA Repair (Amst); 2004 Oct; 3(10):1311-21. PubMed ID: 15336626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design, synthesis, and biological evaluation of DNA sequence and minor groove selective alkylating agents.
    Lee M; Rhodes AL; Wyatt MD; Forrow S; Hartley JA
    Anticancer Drug Des; 1993 Jun; 8(3):173-92. PubMed ID: 8517912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient guanine alkylation through cooperative heterodimeric formation of duocarmycin A and distamycin A.
    Isomura M; Sugiyama H; Saito I
    Nucleic Acids Symp Ser; 1995; (34):47-8. PubMed ID: 8841545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of DNA minor groove alkylation and DNA cross-linking in the cytotoxicity of polybenzamide mustards.
    Turner PR; Denny WA; Ferguson LR
    Anticancer Drug Des; 2000 Aug; 15(4):245-53. PubMed ID: 11200500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequence-specific DNA alkylation of novel tallimustine derivatives.
    Marchini S; Cozzi P; Beria I; Geroni C; Capolongo L; D'Incalci M; Broggini M
    Anticancer Drug Des; 1998 Apr; 13(3):193-205. PubMed ID: 9595033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Escherichia coli MutY and Fpg utilize a processive mechanism for target location.
    Francis AW; David SS
    Biochemistry; 2003 Jan; 42(3):801-10. PubMed ID: 12534293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activity of Escherichia coli DNA-glycosylases on DNA damaged by methylating and ethylating agents and influence of 3-substituted adenine derivatives.
    Tudek B; Van Zeeland AA; Kusmierek JT; Laval J
    Mutat Res; 1998 Mar; 407(2):169-76. PubMed ID: 9637245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of base excision repair in protecting cells from the toxicity of chloroethylnitrosoureas.
    Ludlum DB; Li Q; Matijasevic Z
    IARC Sci Publ; 1999; (150):271-7. PubMed ID: 10626227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repair of chromosomal abasic sites in vivo involves at least three different repair pathways.
    Otterlei M; Kavli B; Standal R; Skjelbred C; Bharati S; Krokan HE
    EMBO J; 2000 Oct; 19(20):5542-51. PubMed ID: 11032821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleotide excision repair defect influences lethality and mutagenicity induced by Me-lex, a sequence-selective N3-adenine methylating agent in the absence of base excision repair.
    Monti P; Iannone R; Campomenosi P; Ciribilli Y; Varadarajan S; Shah D; Menichini P; Gold B; Fronza G
    Biochemistry; 2004 May; 43(19):5592-9. PubMed ID: 15134433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA damage and cytotoxicity induced by minor groove binding methyl sulfonate esters.
    Varadarajan S; Shah D; Dande P; Settles S; Chen FX; Fronza G; Gold B
    Biochemistry; 2003 Dec; 42(48):14318-27. PubMed ID: 14640700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of action of base release by Escherichia coli Fpg protein: role of lysine 155 in catalysis.
    Rabow LE; Kow YW
    Biochemistry; 1997 Apr; 36(16):5084-96. PubMed ID: 9125531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.