These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10363644)

  • 1. Activator complexes containing the proteasomal regulatory ATPases S10b (SUG2) and S6 (TBP1) in different tissues and organisms.
    Hastings R; Walker G; Eyheralde I; Dawson S; Billett M; Mayer RJ
    Mol Biol Rep; 1999 Apr; 26(1-2):35-8. PubMed ID: 10363644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localisation of 26S proteasomes with different subunit composition in insect muscles undergoing programmed cell death.
    Löw P; Hastings RA; Dawson SP; Sass M; Billett MA; Mayer RJ; Reynolds SE
    Cell Death Differ; 2000 Dec; 7(12):1210-7. PubMed ID: 11175258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 220-kDa activator complex of the 26 S proteasome in insects and humans. A role in type II programmed insect muscle cell death and cross-activation of proteasomes from different species.
    Hastings RA; Eyheralde I; Dawson SP; Walker G; Reynolds SE; Billett MA; Mayer RJ
    J Biol Chem; 1999 Sep; 274(36):25691-700. PubMed ID: 10464306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 26S-proteasome: regulation and substrate recognition.
    Dawson S; Hastings R; Takayanagi K; Reynolds S; Løw P; Billett M; Mayer RJ
    Mol Biol Rep; 1997 Mar; 24(1-2):39-44. PubMed ID: 9228279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking.
    Hartmann-Petersen R; Tanaka K; Hendil KB
    Arch Biochem Biophys; 2001 Feb; 386(1):89-94. PubMed ID: 11361004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120.
    Makino Y; Yoshida T; Yogosawa S; Tanaka K; Muramatsu M; Tamura TA
    Genes Cells; 1999 Sep; 4(9):529-39. PubMed ID: 10526239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the participation of the proteasome and calpain in early phases of muscle cell differentiation.
    Ueda Y; Wang MC; Ou BR; Huang J; Elce J; Tanaka K; Ichihara A; Forsberg NE
    Int J Biochem Cell Biol; 1998 Jun; 30(6):679-94. PubMed ID: 9695025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of the ubiquitin-proteasome pathway in cachexia: pentoxifylline suppresses the activation of 20S and 26S proteasomes in muscles from tumor-bearing rats.
    Combaret L; Rallière C; Taillandier D; Tanaka K; Attaix D
    Mol Biol Rep; 1999 Apr; 26(1-2):95-101. PubMed ID: 10363654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes.
    Benaroudj N; Tarcsa E; Cascio P; Goldberg AL
    Biochimie; 2001; 83(3-4):311-8. PubMed ID: 11295491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that proteolysis of Gal4 cannot explain the transcriptional effects of proteasome ATPase mutations.
    Russell SJ; Johnston SA
    J Biol Chem; 2001 Mar; 276(13):9825-31. PubMed ID: 11152478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 20S/26S proteasomal pathway of protein degradation in muscle tissue.
    Dahlmann B; Kuehn L
    Mol Biol Rep; 1995; 21(1):57-62. PubMed ID: 7565666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells.
    Brooks P; Fuertes G; Murray RZ; Bose S; Knecht E; Rechsteiner MC; Hendil KB; Tanaka K; Dyson J; Rivett J
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):155-61. PubMed ID: 10657252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of proteasomes in mammalian cells.
    Bose S; Mason GG; Rivett AJ
    Mol Biol Rep; 1999 Apr; 26(1-2):11-4. PubMed ID: 10363640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective chemical inactivation of AAA proteins reveals distinct functions of proteasomal ATPases.
    Russell SJ; Gonzalez F; Joshua-Tor L; Johnston SA
    Chem Biol; 2001 Oct; 8(10):941-50. PubMed ID: 11590019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit.
    Satoh K; Sasajima H; Nyoumura KI; Yokosawa H; Sawada H
    Biochemistry; 2001 Jan; 40(2):314-9. PubMed ID: 11148024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proteasome: a macromolecular assembly designed for controlled proteolysis.
    Zwickl P; Voges D; Baumeister W
    Philos Trans R Soc Lond B Biol Sci; 1999 Sep; 354(1389):1501-11. PubMed ID: 10582236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 26S proteasome degrades mouse and yeast ornithine decarboxylase in yeast cells.
    Mamroud-Kidron E; Kahana C
    FEBS Lett; 1994 Dec; 356(2-3):162-4. PubMed ID: 7805829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of proteasome complexes by gamma-interferon and phosphorylation.
    Rivett AJ; Bose S; Brooks P; Broadfoot KI
    Biochimie; 2001; 83(3-4):363-6. PubMed ID: 11295498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitin-ligated proteins by closely linked mechanisms.
    Kanayama HO; Tamura T; Ugai S; Kagawa S; Tanahashi N; Yoshimura T; Tanaka K; Ichihara A
    Eur J Biochem; 1992 Jun; 206(2):567-78. PubMed ID: 1317798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of proteasomal ATPases.
    Wollenberg K; Swaffield JC
    Mol Biol Evol; 2001 Jun; 18(6):962-74. PubMed ID: 11371584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.