These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10363822)

  • 41. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus.
    Mesulam MM; Mash D; Hersh L; Bothwell M; Geula C
    J Comp Neurol; 1992 Sep; 323(2):252-68. PubMed ID: 1401259
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efferent connections of the striatopallidal and amygdaloid components of the substantia innominata in the cat: projections to the nucleus accumbens and caudate nucleus.
    Spooren WP; Veening JG; Groenewegen HJ; Cools AR
    Neuroscience; 1991; 44(2):431-47. PubMed ID: 1944894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study.
    François C; Grabli D; McCairn K; Jan C; Karachi C; Hirsch EC; Féger J; Tremblay L
    Brain; 2004 Sep; 127(Pt 9):2055-70. PubMed ID: 15292054
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Localization of the CD15-epitope in the inner ear of the developing mouse.
    Meyer zym Gottesberge AM; Mai JK
    Cell Tissue Res; 1996 Mar; 283(3):395-401. PubMed ID: 8593669
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transient expression of stage-specific embryonic antigen-1 (CD15) in the developing dorsal rat spinal cord.
    Oudega M; Marani E; Thomeer RT
    Histochem J; 1992 Nov; 24(11):869-77. PubMed ID: 1362198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatiotemporal expression of CD15 in the developing chick retina.
    Andressen C; Moertter K; Mai JK
    Brain Res Dev Brain Res; 1996 Sep; 95(2):263-71. PubMed ID: 8874902
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neurotensin-immunoreactive neurons in the ventral striatum of the adult rat: ventromedial caudate-putamen, nucleus accumbens and olfactory tubercle.
    Zahm DS
    Neurosci Lett; 1987 Oct; 81(1-2):41-7. PubMed ID: 3696473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extensive migration and target innervation by striatal precursors after grafting into the neonatal striatum.
    Olsson M; Bentlage C; Wictorin K; Campbell K; Björklund A
    Neuroscience; 1997 Jul; 79(1):57-78. PubMed ID: 9178865
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clumping of acetylcholinesterase activity in the developing striatum of the human fetus and young infant.
    Graybiel AM; Ragsdale CW
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):1214-8. PubMed ID: 6928671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regional distribution of cholecystokinin binding sites in macaque basal ganglia determined by in vitro receptor autoradiography.
    Kritzer MF; Innis RB; Goldman-Rakic PS
    Neuroscience; 1990; 38(1):81-92. PubMed ID: 2255400
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of immunoreactivity for calcitonin gene-related peptide, substance P and glutamate in primary sensory neurons, and for serotonin in the spinal cord of fetal sheep.
    Nitsos I; Rees S
    Neuroscience; 1993 May; 54(1):239-52. PubMed ID: 7685861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The distribution of substance P in the primate basal ganglia: an immunohistochemical study of baboon and human brain.
    Beach TG; McGeer EG
    Neuroscience; 1984 Sep; 13(1):29-52. PubMed ID: 6208509
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey.
    Shink E; Bevan MD; Bolam JP; Smith Y
    Neuroscience; 1996 Jul; 73(2):335-57. PubMed ID: 8783253
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neurogenesis in the basal forebrain of the Chinese hamster (Cricetulus griseus). I. Time of neuron origin.
    ten Donkelaar HJ; Dederen PJ
    Anat Embryol (Berl); 1979 Jul; 156(3):331-48. PubMed ID: 475002
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of CD15 in a subset of dorsal root ganglion cells during the chick embryonic development.
    Andressen C; Mai JK
    Eur J Morphol; 1995 Apr; 33(2):109-18. PubMed ID: 7488514
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum.
    Kubota Y; Kawaguchi Y
    J Comp Neurol; 1993 Jun; 332(4):499-513. PubMed ID: 8349845
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transient expression of GABA immunoreactivity in the developing rat spinal cord.
    Ma W; Behar T; Barker JL
    J Comp Neurol; 1992 Nov; 325(2):271-90. PubMed ID: 1460116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum.
    Berendse HW; Groenewegen HJ
    J Comp Neurol; 1990 Sep; 299(2):187-228. PubMed ID: 2172326
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Age-related dopamine deficiency in the mesostriatal dopamine system of zitter mutant rats: regional fiber vulnerability in the striatum and the olfactory tubercle.
    Ueda S; Aikawa M; Ishizuya-Oka A; Yamaoka S; Koibuchi N; Yoshimoto K
    Neuroscience; 2000; 95(2):389-98. PubMed ID: 10658618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.