These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10365254)

  • 1. Fatty acid profile of Escherichia coli during the heat-shock response.
    Mejía R; Gómez-Eichelmann MC; Fernández MS
    Biochem Mol Biol Int; 1999 May; 47(5):835-44. PubMed ID: 10365254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli membrane fluidity as detected by excimerization of dipyrenylpropane: sensitivity to the bacterial fatty acid profile.
    Mejía R; Gómez-Eichelmann MC; Fernández MS
    Arch Biochem Biophys; 1999 Aug; 368(1):156-60. PubMed ID: 10415123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane fluidity of Escherichia coli during heat-shock.
    Mejía R; Gómez-Eichelmann MC; Fernández MS
    Biochim Biophys Acta; 1995 Nov; 1239(2):195-200. PubMed ID: 7488624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of heat-shock response and inclusion body formation during temperature-induced production of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli.
    Hoffmann F; Rinas U
    Biotechnol Prog; 2000; 16(6):1000-7. PubMed ID: 11101327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock influences the fatty acid composition of the muscle of the Antarctic fish Trematomus bernacchii.
    Truzzi C; Illuminati S; Antonucci M; Scarponi G; Annibaldi A
    Mar Environ Res; 2018 Aug; 139():122-128. PubMed ID: 29776593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The heat shock response of Escherichia coli.
    Arsène F; Tomoyasu T; Bukau B
    Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of temperature variation and phenethyl alcohol addition on acyl chain order and lipid organization in Escherichia coli derived membrane systems. A 2H- and 31P-NMR study.
    Killian JA; Fabrie CH; Baart W; Morein S; de Kruijff B
    Biochim Biophys Acta; 1992 Apr; 1105(2):253-62. PubMed ID: 1375100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monounsaturated fatty acid aerobic synthesis in Bradyrhizobium TAL1000 peanut-nodulating is affected by temperature.
    Paulucci NS; Medeot DB; Woelke M; Dardanelli MS; de Lema MG
    J Appl Microbiol; 2013 May; 114(5):1457-67. PubMed ID: 23461606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS; Moon HY; Yun HS; Jin I
    J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth kinetics of Escherichia coli and expression of a recombinant protein and its isoforms under heat shock conditions.
    Ryan W; Collier P; Loredo L; Pope J; Sachdev R
    Biotechnol Prog; 1996; 12(5):596-601. PubMed ID: 8879154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of elevated growth temperature and heat shock on the lipid composition of the inner and outer membranes of Yersinia pseudotuberculosis.
    Davydova L; Bakholdina S; Barkina M; Velansky P; Bogdanov M; Sanina N
    Biochimie; 2016 Apr; 123():103-9. PubMed ID: 26853818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solute transport proteins and the outer membrane protein NmpC contribute to heat resistance of Escherichia coli AW1.7.
    Ruan L; Pleitner A; Gänzle MG; McMullen LM
    Appl Environ Microbiol; 2011 May; 77(9):2961-7. PubMed ID: 21398480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological responses of Escherichia coli exposed to different heat-stress kinetics.
    Guyot S; Pottier L; Ferret E; Gal L; Gervais P
    Arch Microbiol; 2010 Aug; 192(8):651-61. PubMed ID: 20549191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of membrane fatty acid composition and fluidity on airborne survival of Escherichia coli.
    Ng TW; Chan WL; Lai KM
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3327-3336. PubMed ID: 29450618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane fatty acid composition and membrane fluidity as parameters of stress tolerance in yeast.
    Swan TM; Watson K
    Can J Microbiol; 1997 Jan; 43(1):70-7. PubMed ID: 9057297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Low-Shear Modeled Microgravity on Heat Resistance, Membrane Fatty Acid Composition, and Heat Stress-Related Gene Expression in Escherichia coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895.
    Kim HW; Rhee MS
    Appl Environ Microbiol; 2016 May; 82(10):2893-2901. PubMed ID: 26944847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational adaptation in the E. coli sigma 32 protein in response to heat shock.
    Chakraborty A; Mukherjee S; Chattopadhyay R; Roy S; Chakrabarti S
    J Phys Chem B; 2014 May; 118(18):4793-802. PubMed ID: 24766146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli.
    Shigapova N; Török Z; Balogh G; Goloubinoff P; Vígh L; Horváth I
    Biochem Biophys Res Commun; 2005 Mar; 328(4):1216-23. PubMed ID: 15708006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts.
    Shenhar Y; Rasouly A; Biran D; Ron EZ
    Environ Microbiol; 2009 Dec; 11(12):2989-97. PubMed ID: 19624711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.