These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 10365426)

  • 41. The discontinuous nature of motor execution. I. A model concept for single-muscle multiple-task coordination.
    Staude G; Dengler R; Wolf W
    Biol Cybern; 2000 Jan; 82(1):23-33. PubMed ID: 10650905
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.
    Ovesy M; Nazari MA; Mahdavian M
    Biol Cybern; 2016 Feb; 110(1):73-80. PubMed ID: 26837750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synaptic effects on recruitment gain: a mechanism of importance for the input-output relations of motoneurone pools?
    Kernell D; Hultborn H
    Brain Res; 1990 Jan; 507(1):176-9. PubMed ID: 2302576
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Current distribution in skeletal muscle activated by functional electrical stimulation: image-series formulation and isometric recruitment curve.
    Livshitz LM; Einziger PD; Mizrahi J
    Ann Biomed Eng; 2000; 28(10):1218-28. PubMed ID: 11144983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The control of rapid limb movement in the cat. II. Scaling of isometric force adjustments.
    Ghez C; Vicario D
    Exp Brain Res; 1978 Oct; 33(2):191-202. PubMed ID: 700005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-linear modeling of the steady-state disturbance term in isometric force.
    Stitt JP; Newell KM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2157-60. PubMed ID: 19163124
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physiological consequences of doublet discharges on motoneuronal firing and motor unit force.
    Mrówczyński W; Celichowski J; Raikova R; Krutki P
    Front Cell Neurosci; 2015; 9():81. PubMed ID: 25805972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling the isometric force response to multiple pulse stimuli in locust skeletal muscle.
    Wilson E; Rustighi E; Mace BR; Newland PL
    Biol Cybern; 2011 Feb; 104(1-2):121-36. PubMed ID: 21327827
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Skeletal muscle models composed of motor units: A review.
    Raikova R; Krutki P; Celichowski J
    J Electromyogr Kinesiol; 2023 Jun; 70():102774. PubMed ID: 37099899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isometric force generated by locust skeletal muscle: responses to single stimuli.
    Wilson E; Rustighi E; Mace BR; Newland PL
    Biol Cybern; 2010 Jun; 102(6):503-11. PubMed ID: 20339865
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanics of feline soleus: II. Design and validation of a mathematical model.
    Brown IE; Scott SH; Loeb GE
    J Muscle Res Cell Motil; 1996 Apr; 17(2):221-33. PubMed ID: 8793724
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A hill-type muscle model expansion accounting for effects of varying transverse muscle load.
    Siebert T; Stutzig N; Rode C
    J Biomech; 2018 Jan; 66():57-62. PubMed ID: 29154088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Person-specific biophysical modelling of alpha-motoneuron pools driven by in vivo decoded neural synaptic input.
    Ornelas-Kobayashi R; Gogeascoechea A; Sartori M
    IEEE Trans Neural Syst Rehabil Eng; 2023 Feb; PP():. PubMed ID: 37027671
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Motor modules account for active perception of force.
    Toma S; Santello M
    Sci Rep; 2019 Jun; 9(1):8983. PubMed ID: 31222076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simulating the activation, contraction and movement of skeletal muscles using the bidomain model.
    Lopez Rincon A; Cantu C; Soto R; Shimoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6042-6045. PubMed ID: 28269630
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A THEORETICAL ANALYSIS OF NEURONAL VARIABILITY.
    STEIN RB
    Biophys J; 1965 Mar; 5(2):173-94. PubMed ID: 14268952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Time optimality in the control of human movements.
    Happee R
    Biol Cybern; 1992; 66(4):357-66. PubMed ID: 1550883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A model for a motor unit train recorded during constant force isometric contractions.
    De Luca CJ
    Biol Cybern; 1975 Sep; 19(3):159-67. PubMed ID: 1174585
    [No Abstract]   [Full Text] [Related]  

  • 59. On the volume conduction in human skeletal muscle: in situ measurements.
    Gath I; Stålberg E
    Electroencephalogr Clin Neurophysiol; 1977 Jul; 43(1):106-10. PubMed ID: 68866
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sensitivity of muscle force estimations to changes in muscle input parameters using nonlinear optimization approaches.
    Herzog W
    J Biomech Eng; 1992 May; 114(2):267-8. PubMed ID: 1602772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.