These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10365449)

  • 21. Biotransformation of hinesol isolated from the crude drug Atractylodes lancea by Aspergillus niger and Aspergillus cellulosae.
    Hashimoto T; Noma Y; Kato S; Tanaka M; Takaoka S; Asakawa Y
    Chem Pharm Bull (Tokyo); 1999 May; 47(5):716-7. PubMed ID: 10361702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioconversion of drimenol into 3 beta-hydroxydrimanes by Aspergillus niger. Effect of culture additives.
    Ramirez HE; Cortes M; Agosin E
    J Nat Prod; 1993 May; 56(5):762-4. PubMed ID: 8326324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial and mammalian metabolism studies on the semisynthetic antimalarial, deoxoartemisinin.
    Khalifa SI; Baker JK; Jung M; McChesney JD; Hufford CD
    Pharm Res; 1995 Oct; 12(10):1493-8. PubMed ID: 8584488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biotransformation of two furanocoumarins by the fungi species Aspergillus sp. PTCC 5266 and Aspergillus niger PTCC 5010.
    Ghasemi S; Habibi Z; Mohajeri M; Yousefi M
    Nat Prod Res; 2019 Mar; 33(6):835-842. PubMed ID: 29468895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biotransformation of swertiamarin by Aspergillus niger.
    Chang J; Zhou B
    Pak J Pharm Sci; 2015 Nov; 28(6):1933-7. PubMed ID: 26639489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure elucidation and thermospray high-performance liquid chromatography/mass spectroscopy (HPLC/MS) of the microbial and mammalian metabolites of the antimalarial arteether.
    Hufford CD; Lee IS; ElSohly HN; Chi HT; Baker JK
    Pharm Res; 1990 Sep; 7(9):923-7. PubMed ID: 2235891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotransformation of quinazoline and phthalazine by Aspergillus niger.
    Sutherland JB; Heinze TM; Schnackenberg LK; Freeman JP; Williams AJ
    J Biosci Bioeng; 2011 Mar; 111(3):333-5. PubMed ID: 21169055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acid catalyzed Michael additions to artemisitene.
    Ma J; Weiss E; Kyle DE; Ziffer H
    Bioorg Med Chem Lett; 2000 Jul; 10(14):1601-3. PubMed ID: 10915061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sesquiterpene lactone engineering in microbial and plant platforms: parthenolide and artemisinin as case studies.
    Majdi M; Ashengroph M; Abdollahi MR
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1041-1059. PubMed ID: 26567019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial models of mammalian metabolism: production of novel alpha-diketone metabolites of warfarin and phenprocoumon using Aspergillus niger.
    Rizzo JD; Davis PJ
    Xenobiotica; 1988 Dec; 18(12):1425-37. PubMed ID: 3245234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotransformations of imbricatolic acid by Aspergillus niger and Rhizopus nigricans cultures.
    Schmeda-Hirschmann G; Aranda C; Kurina M; Rodríguez JA; Theoduloz C
    Molecules; 2007 May; 12(5):1092-100. PubMed ID: 17873843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New monoterpenoid by biotransformation of thymoquinone using Aspergillus niger.
    Mohammad MY; Shakya A; Al-Bakain R; Haroon MH; Choudhary MI
    Bioorg Chem; 2018 Oct; 80():212-215. PubMed ID: 29957489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial transformation of baccatin VI and 1beta-hydroxy baccatin I by Aspergillus niger.
    Shen YC; Lo KL; Lin CL; Chakraborty R
    Bioorg Med Chem Lett; 2003 Dec; 13(24):4493-6. PubMed ID: 14643354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial transformation of marine halogenated sesquiterpenes.
    San Martin A; Rovirosa J; Carrasco A; Orejarena S; Soto-Delgado J; Contreras R; Chamy MC
    Nat Prod Commun; 2010 Dec; 5(12):1859-64. PubMed ID: 21299107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial hydroxylation and reduction of the diterpene psiadin.
    Orabi KY; Galal AM; Ibrahim AR; El-Feraly FS; McPhail AT
    Z Naturforsch C J Biosci; 2001; 56(3-4):216-22. PubMed ID: 11371011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial transformation of neoandrographolide by Aspergillus niger (AS 3.739).
    Chen LX; Qiu F; Qu GX; Yao XS
    J Asian Nat Prod Res; 2007; 9(3-5):463-9. PubMed ID: 17701567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotransformation of the diperpenoid, isosteviol, by Aspergillus niger, Penicillium chrysogenum and Rhizopus arrhizus.
    de Oliveira BH; dos Santos MC; Leal PC
    Phytochemistry; 1999 Jul; 51(6):737-41. PubMed ID: 10389273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biotransformation of citrus aromatics nootkatone and valencene by microorganisms.
    Furusawa M; Hashimoto T; Noma Y; Asakawa Y
    Chem Pharm Bull (Tokyo); 2005 Nov; 53(11):1423-9. PubMed ID: 16272725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial transformation of danazol.
    Choudhary MI; Azizuddin ; Atta-ur-Rahman
    Nat Prod Lett; 2002 Apr; 16(2):101-6. PubMed ID: 11990425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial transformation of delta 9(15)-africanene.
    Venkateswarlu Y; Ramesh P; Reddy PS; Jamil K
    Phytochemistry; 1999 Dec; 52(7):1275-7. PubMed ID: 10647214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.