These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 10366200)

  • 1. Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data.
    Ostergaard L; Chesler DA; Weisskoff RM; Sorensen AG; Rosen BR
    J Cereb Blood Flow Metab; 1999 Jun; 19(6):690-9. PubMed ID: 10366200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian estimation of cerebral perfusion using a physiological model of microvasculature.
    Mouridsen K; Friston K; Hjort N; Gyldensted L; Østergaard L; Kiebel S
    Neuroimage; 2006 Nov; 33(2):570-9. PubMed ID: 16971140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the effects of flow dispersion in arterial spin labeling.
    Kazan SM; Chappell MA; Payne SJ
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1635-43. PubMed ID: 19307163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can dynamic susceptibility contrast magnetic resonance imaging perfusion data be analyzed using a model based on directional flow?
    Thacker NA; Scott ML; Jackson A
    J Magn Reson Imaging; 2003 Feb; 17(2):241-55. PubMed ID: 12541232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An alternative viewpoint of the similarities and differences of SVD and FT deconvolution algorithms used for quantitative MR perfusion studies.
    Salluzzi M; Frayne R; Smith MR
    Magn Reson Imaging; 2005 Apr; 23(3):481-92. PubMed ID: 15862650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principles of cerebral perfusion imaging by bolus tracking.
    Østergaard L
    J Magn Reson Imaging; 2005 Dec; 22(6):710-7. PubMed ID: 16261573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using forward calculations of the magnetic field perturbation due to a realistic vascular model to explore the BOLD effect.
    Marques JP; Bowtell RW
    NMR Biomed; 2008 Jul; 21(6):553-65. PubMed ID: 18078307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute quantification of cerebral blood flow with magnetic resonance, reproducibility of the method, and comparison with H2(15)O positron emission tomography.
    Carroll TJ; Teneggi V; Jobin M; Squassante L; Treyer V; Hany TF; Burger C; Wang L; Bye A; Von Schulthess GK; Buck A
    J Cereb Blood Flow Metab; 2002 Sep; 22(9):1149-56. PubMed ID: 12218421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI.
    Ibaraki M; Shimosegawa E; Toyoshima H; Takahashi K; Miura S; Kanno I
    J Cereb Blood Flow Metab; 2005 Mar; 25(3):378-90. PubMed ID: 15674238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An arteriolar compliance model of the cerebral blood flow response to neural stimulus.
    Behzadi Y; Liu TT
    Neuroimage; 2005 May; 25(4):1100-11. PubMed ID: 15850728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deconvolution of bolus-tracking data: a comparison of discretization methods.
    Sourbron S; Luypaert R; Morhard D; Seelos K; Reiser M; Peller M
    Phys Med Biol; 2007 Nov; 52(22):6761-78. PubMed ID: 17975296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study.
    Knutsson L; Ståhlberg F; Wirestam R
    Magn Reson Imaging; 2004 Jul; 22(6):789-98. PubMed ID: 15234447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A distributed parameter model of cerebral blood-tissue exchange with account of capillary transit time distribution.
    Koh TS; Cheong LH; Tan CK; Lim CC
    Neuroimage; 2006 Apr; 30(2):426-35. PubMed ID: 16246589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of velocity selective arterial spin labeling in functional MRI.
    Wu WC; Wong EC
    J Cereb Blood Flow Metab; 2007 Apr; 27(4):831-8. PubMed ID: 16926843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-compartment exchange model for perfusion quantification using arterial spin tagging.
    Zhou J; Wilson DA; Ulatowski JA; Traystman RJ; van Zijl PC
    J Cereb Blood Flow Metab; 2001 Apr; 21(4):440-55. PubMed ID: 11323530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov.
    Zanderigo F; Bertoldo A; Pillonetto G; Cobelli Ast C
    IEEE Trans Biomed Eng; 2009 May; 56(5):1287-97. PubMed ID: 19188118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human cerebral blood flow and metabolism in acute insulin-induced hypoglycemia.
    Kennan RP; Takahashi K; Pan C; Shamoon H; Pan JW
    J Cereb Blood Flow Metab; 2005 Apr; 25(4):527-34. PubMed ID: 15703703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reassessing the clinical efficacy of two MR quantitative DSC PWI CBF algorithms following cross-calibration with PET images.
    Chen JJ; Frayne R; Smith MR
    Phys Med Biol; 2005 Mar; 50(6):1251-63. PubMed ID: 15798320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification.
    Chen JJ; Smith MR; Frayne R
    Magn Reson Med; 2005 Mar; 53(3):700-7. PubMed ID: 15723395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.