BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10366223)

  • 1. Muscle function in a patient with Brody's disease.
    De Ruiter CJ; Wevers RA; Van Engelen BG; Verdijk PW; De Haan A
    Muscle Nerve; 1999 Jun; 22(6):704-11. PubMed ID: 10366223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myopathy caused by a deficiency of Ca2+-adenosine triphosphatase in sarcoplasmic reticulum (Brody's disease).
    Karpati G; Charuk J; Carpenter S; Jablecki C; Holland P
    Ann Neurol; 1986 Jul; 20(1):38-49. PubMed ID: 2943216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ homeostasis in Brody's disease. A study in skeletal muscle and cultured muscle cells and the effects of dantrolene an verapamil.
    Benders AA; Veerkamp JH; Oosterhof A; Jongen PJ; Bindels RJ; Smit LM; Busch HF; Wevers RA
    J Clin Invest; 1994 Aug; 94(2):741-8. PubMed ID: 8040329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of sarcoplasmic reticulum in relaxation of mouse muscle; effects of 2,5-di(tert-butyl)-1,4-benzohydroquinone.
    Westerblad H; Allen DG
    J Physiol; 1994 Jan; 474(2):291-301. PubMed ID: 8006816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of [Ca2+]i to the slowing of relaxation in fatigued single fibres from mouse skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1993 Aug; 468():729-40. PubMed ID: 8254532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slowing of relaxation and [Ca2+]i during prolonged tetanic stimulation of single fibres from Xenopus skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):723-36. PubMed ID: 8734985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease.
    Benders AA; Wevers RA; Veerkamp JH
    Acta Physiol Scand; 1996 Mar; 156(3):355-67. PubMed ID: 8729696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human skeletal sarcoplasmic reticulum Ca2+ uptake and muscle function with aging and strength training.
    Hunter SK; Thompson MW; Ruell PA; Harmer AR; Thom JM; Gwinn TH; Adams RD
    J Appl Physiol (1985); 1999 Jun; 86(6):1858-65. PubMed ID: 10368350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional aspects of skeletal muscle contractile apparatus and sarcoplasmic reticulum after fatigue.
    Williams JH; Ward CW; Spangenburg EE; Nelson RM
    J Appl Physiol (1985); 1998 Aug; 85(2):619-26. PubMed ID: 9688740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aging on sarcoplasmic reticulum function and contraction duration in skeletal muscles of the rat.
    Narayanan N; Jones DL; Xu A; Yu JC
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1032-40. PubMed ID: 8897807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium ATPase and respiratory muscle function.
    Aubier M; Viires N
    Eur Respir J; 1998 Mar; 11(3):758-66. PubMed ID: 9596133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease.
    Odermatt A; Taschner PE; Khanna VK; Busch HF; Karpati G; Jablecki CK; Breuning MH; MacLennan DH
    Nat Genet; 1996 Oct; 14(2):191-4. PubMed ID: 8841193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired calcium pump function does not slow relaxation in human skeletal muscle after prolonged exercise.
    Booth J; McKenna MJ; Ruell PA; Gwinn TH; Davis GM; Thompson MW; Harmer AR; Hunter SK; Sutton JR
    J Appl Physiol (1985); 1997 Aug; 83(2):511-21. PubMed ID: 9262447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malignant hyperthermia: effects of sarcoplasmic reticulum Ca2+ pump inhibition.
    Enzmann NR; Balog EM; Gallant EM
    Muscle Nerve; 1998 Mar; 21(3):361-6. PubMed ID: 9486865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na(+)-Ca2+ exchange induces low Na+ contracture in frog skeletal muscle fibers after partial inhibition of sarcoplasmic reticulum Ca(2+)-ATPase.
    Même W; Léoty C
    Pflugers Arch; 1999 Nov; 438(6):851-9. PubMed ID: 10591074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired sarcoplasmic reticulum Ca(2+) release rate after fatiguing stimulation in rat skeletal muscle.
    Ortenblad N; Sjøgaard G; Madsen K
    J Appl Physiol (1985); 2000 Jul; 89(1):210-7. PubMed ID: 10904054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductions in sarcoplasmic reticulum Ca2+ ATPase activity in rat skeletal muscles of different fibre composition with ischemia and reperfusion.
    Green HJ; McKee NH; Carvalho AJ; Phillips SM
    Can J Physiol Pharmacol; 1997 Jan; 75(1):78-82. PubMed ID: 9101069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca-ATPase, on skeletal muscles from normal and mdx mice.
    Divet A; Lompré AM; Huchet-Cadiou C
    Acta Physiol Scand; 2005 Jul; 184(3):173-86. PubMed ID: 15954985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrergic relaxation in rat gastric fundus: influence of mechanism of induced tone and possible role of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase.
    Van Geldre LA; Lefebvre RA
    Life Sci; 2004 May; 74(26):3259-74. PubMed ID: 15094326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of ion-regulatory membrane proteins of excitation-contraction coupling and relaxation in inherited muscle diseases.
    Froemming GR; Ohlendieck K
    Front Biosci; 2001 Jan; 6():D65-74. PubMed ID: 11145921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.