These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 10366560)
1. Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Gambaryan AS; Robertson JS; Matrosovich MN Virology; 1999 Jun; 258(2):232-9. PubMed ID: 10366560 [TBL] [Abstract][Full Text] [Related]
2. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Matrosovich MN; Gambaryan AS; Teneberg S; Piskarev VE; Yamnikova SS; Lvov DK; Robertson JS; Karlsson KA Virology; 1997 Jun; 233(1):224-34. PubMed ID: 9201232 [TBL] [Abstract][Full Text] [Related]
3. Selection of receptor-binding variants of human influenza A and B viruses in baby hamster kidney cells. Govorkova EA; Matrosovich MN; Tuzikov AB; Bovin NV; Gerdil C; Fanget B; Webster RG Virology; 1999 Sep; 262(1):31-8. PubMed ID: 10489338 [TBL] [Abstract][Full Text] [Related]
4. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllactosamine). Gambaryan AS; Tuzikov AB; Piskarev VE; Yamnikova SS; Lvov DK; Robertson JS; Bovin NV; Matrosovich MN Virology; 1997 Jun; 232(2):345-50. PubMed ID: 9191848 [TBL] [Abstract][Full Text] [Related]
5. Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. Takemae N; Ruttanapumma R; Parchariyanon S; Yoneyama S; Hayashi T; Hiramatsu H; Sriwilaijaroen N; Uchida Y; Kondo S; Yagi H; Kato K; Suzuki Y; Saito T J Gen Virol; 2010 Apr; 91(Pt 4):938-48. PubMed ID: 20007353 [TBL] [Abstract][Full Text] [Related]
6. Changes of the receptor-binding properties of influenza B virus B/Victoria/504/2000 during adaptation in chicken eggs. Lugovtsev VY; Smith DF; Weir JP Virology; 2009 Nov; 394(2):218-26. PubMed ID: 19766280 [TBL] [Abstract][Full Text] [Related]
7. Differences in the biological phenotype of low-yielding (L) and high-yielding (H) variants of swine influenza virus A/NJ/11/76 are associated with their different receptor-binding activity. Gambaryan AS; Matrosovich MN; Bender CA; Kilbourne ED Virology; 1998 Aug; 247(2):223-31. PubMed ID: 9705915 [TBL] [Abstract][Full Text] [Related]
9. Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses. Hardy CT; Young SA; Webster RG; Naeve CW; Owens RJ Virology; 1995 Aug; 211(1):302-6. PubMed ID: 7645225 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the restriction to the growth of nonegg-adapted human influenza virus in eggs. Williams SP; Robertson JS Virology; 1993 Oct; 196(2):660-5. PubMed ID: 8372439 [TBL] [Abstract][Full Text] [Related]
11. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. Stevens J; Blixt O; Glaser L; Taubenberger JK; Palese P; Paulson JC; Wilson IA J Mol Biol; 2006 Feb; 355(5):1143-55. PubMed ID: 16343533 [TBL] [Abstract][Full Text] [Related]
12. Improvement of influenza A/Fujian/411/02 (H3N2) virus growth in embryonated chicken eggs by balancing the hemagglutinin and neuraminidase activities, using reverse genetics. Lu B; Zhou H; Ye D; Kemble G; Jin H J Virol; 2005 Jun; 79(11):6763-71. PubMed ID: 15890915 [TBL] [Abstract][Full Text] [Related]
13. Probing of the receptor-binding sites of the H1 and H3 influenza A and influenza B virus hemagglutinins by synthetic and natural sialosides. Matrosovich MN; Gambaryan AS; Tuzikov AB; Byramova NE; Mochalova LV; Golbraikh AA; Shenderovich MD; Finne J; Bovin NV Virology; 1993 Sep; 196(1):111-21. PubMed ID: 8356788 [TBL] [Abstract][Full Text] [Related]
14. Structural and evolutionary characteristics of HA, NA, NS and M genes of clinical influenza A/H3N2 viruses passaged in human and canine cells. Zhirnov OP; Vorobjeva IV; Saphonova OA; Poyarkov SV; Ovcharenko AV; Anhlan D; Malyshev NA J Clin Virol; 2009 Aug; 45(4):322-33. PubMed ID: 19546028 [TBL] [Abstract][Full Text] [Related]
15. Stabilizing the glycosylation pattern of influenza B hemagglutinin following adaptation to growth in eggs. Chen Z; Aspelund A; Jin H Vaccine; 2008 Jan; 26(3):361-71. PubMed ID: 18079027 [TBL] [Abstract][Full Text] [Related]
16. Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. Gubareva LV; Kaiser L; Matrosovich MN; Soo-Hoo Y; Hayden FG J Infect Dis; 2001 Feb; 183(4):523-31. PubMed ID: 11170976 [TBL] [Abstract][Full Text] [Related]
17. Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Medeiros R; Escriou N; Naffakh N; Manuguerra JC; van der Werf S Virology; 2001 Oct; 289(1):74-85. PubMed ID: 11601919 [TBL] [Abstract][Full Text] [Related]
18. Influence of host cell-mediated variation on the international surveillance of influenza A (H3N2) viruses. Meyer WJ; Wood JM; Major D; Robertson JS; Webster RG; Katz JM Virology; 1993 Sep; 196(1):130-7. PubMed ID: 8356790 [TBL] [Abstract][Full Text] [Related]
19. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs. Mochalova L; Gambaryan A; Romanova J; Tuzikov A; Chinarev A; Katinger D; Katinger H; Egorov A; Bovin N Virology; 2003 Sep; 313(2):473-80. PubMed ID: 12954214 [TBL] [Abstract][Full Text] [Related]
20. Antigenic alteration of influenza B virus associated with loss of a glycosylation site due to host-cell adaptation. Saito T; Nakaya Y; Suzuki T; Ito R; Saito T; Saito H; Takao S; Sahara K; Odagiri T; Murata T; Usui T; Suzuki Y; Tashiro M J Med Virol; 2004 Oct; 74(2):336-43. PubMed ID: 15332284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]