These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 1036715)

  • 21. Valinomycin-mediated ion transport through neutral lipid membranes: influence of hydrocarbon chain length and temperature.
    Benz R; Stark G; Janko K; Läuger P
    J Membr Biol; 1973; 14(4):339-64. PubMed ID: 4781449
    [No Abstract]   [Full Text] [Related]  

  • 22. Valinomycin as a probe for the study of structural changes of black lipid membranes.
    Stark G; Benz R; Pohl GW; Janko K
    Biochim Biophys Acta; 1972 Jun; 266(3):603-12. PubMed ID: 5040247
    [No Abstract]   [Full Text] [Related]  

  • 23. Kinetics of ion transport in lipid membranes induced by lysine-valinomycin and derivatives.
    Stark G; Gisin BF
    Biophys Struct Mech; 1979 Dec; 6(1):39-56. PubMed ID: 44205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of valinomycin with cations at the air-water interface.
    Kemp G; Wenner CE
    Biochim Biophys Acta; 1972 Sep; 282(1):1-7. PubMed ID: 5070076
    [No Abstract]   [Full Text] [Related]  

  • 25. Transport of alkali cations through thin lipid membranes by (222)C10-cryptand, an ionizable mobile carrier.
    Castaing M; Morel F; Lehn JM
    J Membr Biol; 1986; 89(3):251-67. PubMed ID: 3701842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of peptide PV on the ionic permeability of lipid bilayer membranes.
    Ting-Beall HP; Tosteson MT; Gisin BF; Tosteson DC
    J Gen Physiol; 1974 Apr; 63(4):492-508. PubMed ID: 4820091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of 3-phenylindole on lipophilic ion and carrier-mediated ion transport across bilayer lipid membranes.
    Sinha BA; Smejtek P
    J Membr Biol; 1983; 71(1-2):119-30. PubMed ID: 6687614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes.
    van Dijk C; de Levie R
    Biophys J; 1985 Jul; 48(1):125-36. PubMed ID: 3839420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of charged lipid vesicles with planar bilayer lipid membranes: detection by antibiotic membrane probes.
    Cohen JA; Moronne MM
    J Supramol Struct; 1976; 5(3):409-16. PubMed ID: 1024124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stacking of safranine in liposomes during valinomycin-induced efflux of potassium ions.
    Akerman KE; Saris NE
    Biochim Biophys Acta; 1976 Apr; 426(4):624-9. PubMed ID: 1259986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sodium transport by an ionizable and a neutral mobile carrier: effects of membrane structure on the apparent activation energy.
    Vareille G; Marion P; Kraus JL; Castaing M
    Biochim Biophys Acta; 1993 Feb; 1146(1):25-37. PubMed ID: 8443224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The K(+)-ionophores nonactin and valinomycin interact differently with the protein of reconstituted cytochrome c oxidase.
    Steverding D; Kadenbach B
    J Bioenerg Biomembr; 1990 Apr; 22(2):197-205. PubMed ID: 2158497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles.
    Kuo KH; Fukuto TR; Miller TA; Bruner LJ
    Biophys J; 1976 Feb; 16(2 Pt 1):143-50. PubMed ID: 1247644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular basis for the action of macrocyclic carriers on passive ionic translocation across lipid bilayer membranes.
    Eisenman G; Szabo G; McLaughlin SG; Ciani SM
    J Bioenerg; 1973 Jan; 4(1):93-148. PubMed ID: 4717529
    [No Abstract]   [Full Text] [Related]  

  • 35. The effect of the presence of valinomycin on the interfacial tension of lecithin membrane.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):158-62. PubMed ID: 16051474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proceedings: Chemical control of the lipid phase transition in black lecithin films.
    Smedt HD; Borghgraef R
    Arch Int Physiol Biochim; 1975 Feb; 83(1):139-40. PubMed ID: 50775
    [No Abstract]   [Full Text] [Related]  

  • 37. The energy barriers to ion transport by nonactin across thin lipid membranes.
    Hladky SB
    Biochim Biophys Acta; 1974 May; 352(1):71-85. PubMed ID: 4859535
    [No Abstract]   [Full Text] [Related]  

  • 38. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nonactin-type carriers.
    Krasne S; Eisenman G
    J Membr Biol; 1976 Dec; 30(1):1-44. PubMed ID: 1037004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of stirring on the flux of carriers into black lipid membranes.
    Hladky SB
    Biochim Biophys Acta; 1973 May; 307(2):261-9. PubMed ID: 4711192
    [No Abstract]   [Full Text] [Related]  

  • 40. Efficiency, Na+/K+ selectivity and temperature dependence of ion transport through lipid membranes by (221)C10-cryptand, an ionizable mobile carrier.
    Castaing M; Lehn JM
    J Membr Biol; 1987; 97(2):79-95. PubMed ID: 3446819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.