These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 10367450)

  • 1. Measurement of sealing resistance of cell-electrode interfaces in neuronal cultures using impedance spectroscopy.
    Buitenweg JR; Rutten WL; Willems WP; van Nieuwkasteele JW
    Med Biol Eng Comput; 1998 Sep; 36(5):630-7. PubMed ID: 10367450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular detection of active membrane currents in the neuron-electrode interface.
    Buitenweg JR; Rutten WL; Marani E; Polman SK; Ursum J
    J Neurosci Methods; 2002 Apr; 115(2):211-21. PubMed ID: 11992672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance spectroscopy analysis of cell-electrode interface.
    Jianhui L; Xiaoming W; Pengsheng H; Tianling R; Litian L
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7608-11. PubMed ID: 17282042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance.
    Yang L; Ruan C; Li Y
    Biosens Bioelectron; 2003 Dec; 19(5):495-502. PubMed ID: 14623474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to Choose a Proper Theoretical Analysis Model Based on Cell Adhesion and Nonadhesion Impedance Measurement.
    Wei M; Zhang R; Zhang F; Yang N; Zhang Y; Li G
    ACS Sens; 2021 Mar; 6(3):673-687. PubMed ID: 33724797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of planar microelectrode geometry on neuron stimulation: finite element modeling and experimental validation of the efficient electrode shape.
    Ghazavi A; Westwick D; Xu F; Wijdenes P; Syed N; Dalton C
    J Neurosci Methods; 2015 Jun; 248():51-8. PubMed ID: 25845480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance characterization and modeling of electrodes for biomedical applications.
    Franks W; Schenker I; Schmutz P; Hierlemann A
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1295-302. PubMed ID: 16041993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiologic studies of neronal activities under ischemia condition.
    Huang SH; Wang PH; Chen JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4146-9. PubMed ID: 19163625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopy.
    Bragós R; Sarro E; Fontova A; Soley A; Cairó J; Bayés-Genís A; Rosell J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2106-9. PubMed ID: 17946497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording.
    Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD
    J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental factors effecting stability of Electrochemical Impedance Spectroscopy Measurements.
    Koo B; Weiland J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2949-2952. PubMed ID: 30441018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Electrode Models for Impedance Analysis of Epithelial and Endothelial Monolayers Cultured on Microelectrodes.
    Chiu WC; Chen WL; Lai YT; Hung YH; Lo CM
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnitude and behavior of cross-talk effects in multichannel electrophysiology experiments.
    Nelson MJ; Valtcheva S; Venance L
    J Neurophysiol; 2017 Jul; 118(1):574-594. PubMed ID: 28424297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes.
    Frampton JP; Hynd MR; Williams JC; Shuler ML; Shain W
    J Neural Eng; 2007 Dec; 4(4):399-409. PubMed ID: 18057507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical properties of retinal-electrode interface.
    Shah S; Hines A; Zhou D; Greenberg RJ; Humayun MS; Weiland JD
    J Neural Eng; 2007 Mar; 4(1):S24-9. PubMed ID: 17325413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations.
    Gawad S; Cheung K; Seger U; Bertsch A; Renaud P
    Lab Chip; 2004 Jun; 4(3):241-51. PubMed ID: 15159786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.