These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10367970)

  • 1. Current source-density analysis of light-evoked field potentials in rabbit retina.
    Karwoski CJ; Xu X
    Vis Neurosci; 1999; 16(2):369-77. PubMed ID: 10367970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current source density analysis of retinal field potentials. II. Pharmacological analysis of the b-wave and M-wave.
    Xu X; Karwoski CJ
    J Neurophysiol; 1994 Jul; 72(1):96-105. PubMed ID: 7965036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of slow PIII in frog retina: current source density analysis in the eyecup and isolated retina.
    Xu X; Karwoski CJ
    Vis Neurosci; 1997; 14(5):827-33. PubMed ID: 9364721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs.
    Green DG; Kapousta-Bruneau NV
    Vis Neurosci; 1999; 16(4):727-41. PubMed ID: 10431921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current source density analysis of the electroretinographic d wave of frog retina.
    Xu X; Karwoski C
    J Neurophysiol; 1995 Jun; 73(6):2459-69. PubMed ID: 7666152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current source density (CSD) analysis of retinal field potentials. I. Methodological considerations and depth profiles.
    Xu X; Karwoski CJ
    J Neurophysiol; 1994 Jul; 72(1):84-95. PubMed ID: 7965035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraretinal analysis of the a-wave of the electroretinogram (ERG) in dark-adapted intact cat retina.
    Kang Derwent JJ; Linsenmeier RA
    Vis Neurosci; 2001; 18(3):353-63. PubMed ID: 11497412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo electrical stimulation of rabbit retina: effect of stimulus duration and electrical field orientation.
    Shah HA; Montezuma SR; Rizzo JF
    Exp Eye Res; 2006 Aug; 83(2):247-54. PubMed ID: 16750527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacology of the skate electroretinogram indicates independent ON and OFF bipolar cell pathways.
    Chappell RL; Rosenstein FJ
    J Gen Physiol; 1996 Apr; 107(4):535-44. PubMed ID: 8722565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. M-wave of the toad electroretinogram.
    Katz BJ; Wen R; Zheng JB; Xu ZA; Oakley B
    J Neurophysiol; 1991 Dec; 66(6):1927-40. PubMed ID: 1812226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina.
    Bloomfield SA; Xin D
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):771-83. PubMed ID: 10718754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of electroretinogram b-wave generation: a test of the K+ hypothesis.
    Newman EA; Odette LL
    J Neurophysiol; 1984 Jan; 51(1):164-82. PubMed ID: 6319623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular K+ activity changes related to electroretinogram components. II. Rabbit (E-type) retinas.
    Dick E; Miller RF; Bloomfield S
    J Gen Physiol; 1985 Jun; 85(6):911-31. PubMed ID: 2410539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1989 Jun; 61(6):1233-43. PubMed ID: 2746323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina.
    Frishman LJ; Yamamoto F; Bogucka J; Steinberg RH
    J Neurophysiol; 1992 May; 67(5):1201-12. PubMed ID: 1317916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular origin of intrinsic optical signals in the rabbit retina.
    Naderian A; Bussières L; Thomas S; Lesage F; Casanova C
    Vision Res; 2017 Aug; 137():40-49. PubMed ID: 28687326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas.
    Dick E; Miller RF
    J Gen Physiol; 1985 Jun; 85(6):885-909. PubMed ID: 3926945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K(+)-evoked Müller cell depolarization generates b-wave of electroretinogram in toad retina.
    Wen R; Oakley B
    Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2117-21. PubMed ID: 2107544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rabbit electroretinogram: effect of GABA and its antagonists.
    Gottlob I; Wündsch L; Tuppy FK
    Vision Res; 1988; 28(2):203-10. PubMed ID: 3414006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the Xenopus electroretinogram by actions of glycine in the proximal retina.
    Arnarsson A; Eysteinsson T
    Acta Physiol Scand; 2000 Jul; 169(3):249-58. PubMed ID: 10886039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.