These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10368016)

  • 1. Application of the fundamental parameter method to the in vivo x-ray fluorescence analysis of Pt.
    Szalóki I; Lewis DG; Bennett CA; Kilic A
    Phys Med Biol; 1999 May; 44(5):1245-55. PubMed ID: 10368016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plane polarized x-ray fluorescence system for the in vivo measurement of platinum in head and neck tumours.
    Ali PA; Al-Hussany AF; Bennett CA; Hancock DA; El-Sharkawi AM
    Phys Med Biol; 1998 Aug; 43(8):2337-45. PubMed ID: 9725608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimisation of a polarised X-ray source for the in vivo measurement of platinum in head and neck tumours.
    Ali PA; Bennet C; el-Sharkawi AM; Hancock DA
    Appl Radiat Isot; 1998; 49(5-6):647-50. PubMed ID: 9569567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo measurement of platinum in the kidneys using X-ray fluorescence.
    Kadhim R; al-Hussany A; Ali PA; Hancock DA; el-Sharkawi AM
    Ann N Y Acad Sci; 2000 May; 904():263-6. PubMed ID: 10865752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of XFCT imaging strategy for monitoring the spatial distribution of platinum-based chemodrugs: instrumentation and phantom validation.
    Kuang Y; Pratx G; Bazalova M; Qian J; Meng B; Xing L
    Med Phys; 2013 Mar; 40(3):030701. PubMed ID: 23464279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of source-excited in vivo x-ray fluorescence measurements of heavy metals.
    O'Meara JM; Chettle DR; McNeill FE; Prestwich WV; Svensson CE
    Phys Med Biol; 1998 Jun; 43(6):1413-28. PubMed ID: 9651014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer aided design of a polarised source for in vivo X-ray fluorescence analysis.
    Lewis DG; Kilic A; Ogg CA
    Appl Radiat Isot; 1998; 49(5-6):707-9. PubMed ID: 9569586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method detection limit for potential in vivo arsenic measurements with a 50 W x-ray tube.
    Studinski RC; McNeill FE; O'Meara JM; Chettle DR
    Phys Med Biol; 2006 Nov; 51(21):N381-7. PubMed ID: 17047256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of a backscattered X-ray fluorescence system.
    Al-Ghorabie FH
    J Xray Sci Technol; 2015; 23(1):57-64. PubMed ID: 25567407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new Monte Carlo program for computing low-energy gamma- and X-ray propagation in an axially-symmetric XRF system. Swansea In Vivo Analysis and Cancer (SIVAC) Group.
    Evans CJ; Shamsaie M; Ghara'ati H; Ali PA
    Appl Radiat Isot; 1998; 49(5-6):559-60. PubMed ID: 9606085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of a method detection limit for an in vivo XRF arsenic detection system.
    Studinski RC; McNeill FE; Chettle DR; O'Meara JM
    Phys Med Biol; 2005 Feb; 50(3):521-30. PubMed ID: 15773727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sensitive noninvasive analysis of Pt in external tissues. Followup of Pt deposition following cisplatin treatment.
    Gorodetsky R; Vexler A; Mou X; Kaufman B; Loewenthal E
    Med Phys; 1993; 20(4):1007-12. PubMed ID: 8413007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo.
    Aro AC; Todd AC; Amarasiriwardena C; Hu H
    Phys Med Biol; 1994 Dec; 39(12):2263-71. PubMed ID: 15551552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 133Xe for the in vivo X-ray fluorescence measurement of platinum.
    Ogg CA; Ali PA; El-Sharkawi AM; Hancock DA
    Phys Med Biol; 1994 Nov; 39(11):2105-12. PubMed ID: 15560015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial measurements of platinum concentration in head and neck tumors using X-ray fluorescence.
    Ali PA; Lewis DG; el-Sharkawi AM; al-Sadhan FA; Evans CJ; Hancock DA; Dutton J
    Basic Life Sci; 1993; 60():281-4. PubMed ID: 8110128
    [No Abstract]   [Full Text] [Related]  

  • 16. A Monte Carlo (MC) based individual calibration method for in vivo x-ray fluorescence analysis (XRF).
    Hansson M; Isaksson M
    Phys Med Biol; 2007 Apr; 52(7):2009-19. PubMed ID: 17374924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of lead in bone phantoms and arsenic in soft tissue phantoms using synchrotron radiation and a portable x-ray fluorescence system.
    Groskopf C; Bennett SR; Gherase MR; Fleming DEB
    Physiol Meas; 2017 Feb; 38(2):374-386. PubMed ID: 28134135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo X-ray fluorescence (XRF) measurement of uranium in bone.
    O'Meara JM; Chettle DR; McNeill FE; Webber CE
    Appl Radiat Isot; 1998; 49(5-6):713-5. PubMed ID: 9569588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source.
    Manohar N; Reynoso FJ; Cho SH
    Med Phys; 2013 Aug; 40(8):080702. PubMed ID: 23927295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of a polarized source for in vivo x-ray fluorescence analysis of platinum and other heavy metals.
    Lewis DG
    Phys Med Biol; 1994 Jan; 39(1):197-206. PubMed ID: 7651997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.