BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 10368162)

  • 1. Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway.
    Huang M; Oppermann-Sanio FB; Steinbüchel A
    J Bacteriol; 1999 Jun; 181(12):3837-41. PubMed ID: 10368162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and molecular characterization of the Clostridium magnum acetoin dehydrogenase enzyme system.
    Krüger N; Oppermann FB; Lorenzl H; Steinbüchel A
    J Bacteriol; 1994 Jun; 176(12):3614-30. PubMed ID: 8206840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system.
    Oppermann FB; Steinbüchel A
    J Bacteriol; 1994 Jan; 176(2):469-85. PubMed ID: 8110297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis.
    Ali NO; Bignon J; Rapoport G; Debarbouille M
    J Bacteriol; 2001 Apr; 183(8):2497-504. PubMed ID: 11274109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription in the acetoin catabolic pathway is regulated by AcoR and CcpA in Bacillus thuringiensis.
    Peng Q; Zhao X; Wen J; Huang M; Zhang J; Song F
    Microbiol Res; 2020 May; 235():126438. PubMed ID: 32088504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and sequencing of a 40.6 kb segment in the 73 degrees-76 degrees region of the Bacillus subtilis chromosome containing genes for trehalose metabolism and acetoin utilization.
    Yamamoto H; Uchiyama S; Sekiguchi J
    Microbiology (Reading); 1996 Nov; 142 ( Pt 11)():3057-65. PubMed ID: 8969503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An acetoin-regulated expression system of Bacillus subtilis.
    Silbersack J; Jürgen B; Hecker M; Schneidinger B; Schmuck R; Schweder T
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):895-903. PubMed ID: 16944132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and molecular characterization of the Alcaligenes eutrophus H16 aco operon genes involved in acetoin catabolism.
    Priefert H; Hein S; Krüger N; Zeh K; Schmidt B; Steinbüchel A
    J Bacteriol; 1991 Jul; 173(13):4056-71. PubMed ID: 2061286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of the Pseudomonas putida 2,3-butanediol catabolic pathway.
    Huang M; Oppermann FB; Steinbüchel A
    FEMS Microbiol Lett; 1994 Dec; 124(2):141-50. PubMed ID: 7813883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfpo and Escherichia coli entD genes.
    Grossman TH; Tuckman M; Ellestad S; Osburne MS
    J Bacteriol; 1993 Oct; 175(19):6203-11. PubMed ID: 8407792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and genetic analyses of acetoin catabolism in Alcaligenes eutrophus.
    Fründ C; Priefert H; Steinbüchel A; Schlegel HG
    J Bacteriol; 1989 Dec; 171(12):6539-48. PubMed ID: 2556366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.
    Yan P; Wu Y; Yang L; Wang Z; Chen T
    Biotechnol Lett; 2018 Feb; 40(2):393-398. PubMed ID: 29236191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures.
    Chen T; Liu WX; Fu J; Zhang B; Tang YJ
    J Biotechnol; 2013 Dec; 168(4):499-505. PubMed ID: 24120578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (R,R)-Butane-2,3-diol dehydrogenase from Bacillus clausii DSM 8716
    Muschallik L; Molinnus D; Bongaerts J; Pohl M; Wagner T; Schöning MJ; Siegert P; Selmer T
    J Biotechnol; 2017 Sep; 258():41-50. PubMed ID: 28793235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis.
    Zhang X; Zhang R; Bao T; Yang T; Xu M; Li H; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1067-76. PubMed ID: 23836140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoprene formation in Bacillus subtilis: a barometer of central carbon assimilation in a bioreactor?
    Shirk MC; Wagner WP; Fall R
    Biotechnol Prog; 2002; 18(5):1109-15. PubMed ID: 12363365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Characterization of the Metabolism of Acetoin and Its Derivative Ligustrazine in Bacillus subtilis under Micro-Oxygen Conditions.
    Xu Y; Jiang Y; Li X; Sun B; Teng C; Yang R; Xiong K; Fan G; Wang W
    J Agric Food Chem; 2018 Mar; 66(12):3179-3187. PubMed ID: 29512378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. R-acetoin accumulation and dissimilation in Klebsiella pneumoniae.
    Wang D; Zhou J; Chen C; Wei D; Shi J; Jiang B; Liu P; Hao J
    J Ind Microbiol Biotechnol; 2015 Aug; 42(8):1105-15. PubMed ID: 26059458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetoin catabolic system of Klebsiella pneumoniae CG43: sequence, expression, and organization of the aco operon.
    Deng WL; Chang HY; Peng HL
    J Bacteriol; 1994 Jun; 176(12):3527-35. PubMed ID: 8206829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.