These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 10368299)
1. Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Kryger G; Silman I; Sussman JL Structure; 1999 Mar; 7(3):297-307. PubMed ID: 10368299 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo californica. Kryger G; Silman I; Sussman JL J Physiol Paris; 1998; 92(3-4):191-4. PubMed ID: 9789806 [TBL] [Abstract][Full Text] [Related]
3. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases. Saxena A; Fedorko JM; Vinayaka CR; Medhekar R; Radić Z; Taylor P; Lockridge O; Doctor BP Eur J Biochem; 2003 Nov; 270(22):4447-58. PubMed ID: 14622273 [TBL] [Abstract][Full Text] [Related]
4. The rationale for E2020 as a potent acetylcholinesterase inhibitor. Kawakami Y; Inoue A; Kawai T; Wakita M; Sugimoto H; Hopfinger AJ Bioorg Med Chem; 1996 Sep; 4(9):1429-46. PubMed ID: 8894101 [TBL] [Abstract][Full Text] [Related]
5. Dynamic mechanism of E2020 binding to acetylcholinesterase: a steered molecular dynamics simulation. Niu C; Xu Y; Xu Y; Luo X; Duan W; Silman I; Sussman JL; Zhu W; Chen K; Shen J; Jiang H J Phys Chem B; 2005 Dec; 109(49):23730-8. PubMed ID: 16375354 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and acetylcholinesterase inhibitory activity of huperzine A-E2020 combined compound. Zeng F; Jiang H; Zhai Y; Zhang H; Chen K; Ji R Bioorg Med Chem Lett; 1999 Dec; 9(23):3279-84. PubMed ID: 10612585 [TBL] [Abstract][Full Text] [Related]
7. Prediction of the binding site of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine in acetylcholinesterase by docking studies with the SYSDOC program. Pang YP; Kozikowski AP J Comput Aided Mol Des; 1994 Dec; 8(6):683-93. PubMed ID: 7738604 [TBL] [Abstract][Full Text] [Related]
8. Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking. Pilger C; Bartolucci C; Lamba D; Tropsha A; Fels G J Mol Graph Model; 2001; 19(3-4):288-96, 374-8. PubMed ID: 11449566 [TBL] [Abstract][Full Text] [Related]
9. Donepezil hydrochloride: a treatment drug for Alzheimer's disease. Sugimoto H Chem Rec; 2001; 1(1):63-73. PubMed ID: 11893059 [TBL] [Abstract][Full Text] [Related]
10. Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Sugimoto H; Yamanishi Y; Iimura Y; Kawakami Y Curr Med Chem; 2000 Mar; 7(3):303-39. PubMed ID: 10637367 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and evaluation of tacrine-E2020 hybrids as acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. Shao D; Zou C; Luo C; Tang X; Li Y Bioorg Med Chem Lett; 2004 Sep; 14(18):4639-42. PubMed ID: 15324879 [TBL] [Abstract][Full Text] [Related]
13. Kinetic and structural studies on the interactions of Torpedo californica acetylcholinesterase with two donepezil-like rigid analogues. Caliandro R; Pesaresi A; Cariati L; Procopio A; Oliverio M; Lamba D J Enzyme Inhib Med Chem; 2018 Dec; 33(1):794-803. PubMed ID: 29651884 [TBL] [Abstract][Full Text] [Related]
14. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity. Wong DM; Greenblatt HM; Dvir H; Carlier PR; Han YF; Pang YP; Silman I; Sussman JL J Am Chem Soc; 2003 Jan; 125(2):363-73. PubMed ID: 12517147 [TBL] [Abstract][Full Text] [Related]
15. Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen: identification of N-formylkynurenine tryptophan derivatives within the active-site gorge of its complex with the photosensitizer methylene blue. Triquigneaux MM; Ehrenshaft M; Roth E; Silman I; Ashani Y; Mason RP; Weiner L; Deterding LJ Biochem J; 2012 Nov; 448(1):83-91. PubMed ID: 22888904 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: implications for the design of new anti-Alzheimer drugs. Bartolucci C; Perola E; Pilger C; Fels G; Lamba D Proteins; 2001 Feb; 42(2):182-91. PubMed ID: 11119642 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer's disease therapeutics. Kwon YE; Park JY; No KT; Shin JH; Lee SK; Eun JS; Yang JH; Shin TY; Kim DK; Chae BS; Leem JY; Kim KH Bioorg Med Chem; 2007 Oct; 15(20):6596-607. PubMed ID: 17681794 [TBL] [Abstract][Full Text] [Related]
18. Peripheral and dual binding site acetylcholinesterase inhibitors: implications in treatment of Alzheimer's disease. Castro A; Martinez A Mini Rev Med Chem; 2001 Sep; 1(3):267-72. PubMed ID: 12369973 [TBL] [Abstract][Full Text] [Related]
19. Molecular modelling and QSAR of reversible acetylcholines-terase inhibitors. Kaur J; Zhang MQ Curr Med Chem; 2000 Mar; 7(3):273-94. PubMed ID: 10637365 [TBL] [Abstract][Full Text] [Related]
20. Targeting Alzheimer's disease by investigating previously unexplored chemical space surrounding the cholinesterase inhibitor donepezil. van Greunen DG; Cordier W; Nell M; van der Westhuyzen C; Steenkamp V; Panayides JL; Riley DL Eur J Med Chem; 2017 Feb; 127():671-690. PubMed ID: 27823887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]