BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 10368368)

  • 1. Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability.
    Haseler LJ; Hogan MC; Richardson RS
    J Appl Physiol (1985); 1999 Jun; 86(6):2013-8. PubMed ID: 10368368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle oxidative metabolism in sedentary humans: 31P-MRS assessment of O2 supply and demand limitations.
    Haseler LJ; Lin AP; Richardson RS
    J Appl Physiol (1985); 2004 Sep; 97(3):1077-81. PubMed ID: 15133010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphocreatine hydrolysis during submaximal exercise: the effect of FIO2.
    Haseler LJ; Richardson RS; Videen JS; Hogan MC
    J Appl Physiol (1985); 1998 Oct; 85(4):1457-63. PubMed ID: 9760341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps.
    Richardson RS; Grassi B; Gavin TP; Haseler LJ; Tagore K; Roca J; Wagner PD
    J Appl Physiol (1985); 1999 Mar; 86(3):1048-53. PubMed ID: 10066722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study.
    Rana P; Varshney A; Devi MM; Kumar P; Khushu S
    Indian J Biochem Biophys; 2008 Aug; 45(4):263-8. PubMed ID: 18788477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P-MRS study.
    Hogan MC; Richardson RS; Haseler LJ
    J Appl Physiol (1985); 1999 Apr; 86(4):1367-73. PubMed ID: 10194224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced muscle oxidative capacity is independent of O2 availability in elderly people.
    Layec G; Haseler LJ; Richardson RS
    Age (Dordr); 2013 Aug; 35(4):1183-92. PubMed ID: 22760857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphocreatine resynthesis during recovery in different muscles of the exercising leg by 31P-MRS.
    Yoshida T; Abe D; Fukuoka Y
    Scand J Med Sci Sports; 2013 Oct; 23(5):e313-9. PubMed ID: 23662804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.
    Pipinos II; Shepard AD; Anagnostopoulos PV; Katsamouris A; Boska MD
    J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 31P nuclear magnetic resonance study on changes in phosphocreatine and the intracellular pH in rat skeletal muscle during exercise at various inspired oxygen contents.
    Sunoo S; Asano K; Mitsumori F
    Eur J Appl Physiol Occup Physiol; 1996; 74(4):305-10. PubMed ID: 8911821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary nitrate accelerates postexercise muscle metabolic recovery and O2 delivery in hypoxia.
    Vanhatalo A; Jones AM; Blackwell JR; Winyard PG; Fulford J
    J Appl Physiol (1985); 2014 Dec; 117(12):1460-70. PubMed ID: 25301896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous in vivo measurements of HbO2 saturation and PCr kinetics after exercise in normal humans.
    McCully KK; Iotti S; Kendrick K; Wang Z; Posner JD; Leigh J; Chance B
    J Appl Physiol (1985); 1994 Jul; 77(1):5-10. PubMed ID: 7961273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen availability and PCr recovery rate in untrained human calf muscle: evidence of metabolic limitation in normoxia.
    Haseler LJ; Lin A; Hoff J; Richardson RS
    Am J Physiol Regul Integr Comp Physiol; 2007 Nov; 293(5):R2046-51. PubMed ID: 17715186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: a 31P magnetic resonance spectroscopy study.
    Vanhatalo A; Fulford J; DiMenna FJ; Jones AM
    Exp Physiol; 2010 Apr; 95(4):528-40. PubMed ID: 20028850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen availability and skeletal muscle oxidative capacity in patients with peripheral artery disease: implications from in vivo and in vitro assessments.
    Hart CR; Layec G; Trinity JD; Le Fur Y; Gifford JR; Clifton HL; Richardson RS
    Am J Physiol Heart Circ Physiol; 2018 Oct; 315(4):H897-H909. PubMed ID: 29932772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial coupling in humans: assessment of the P/O2 ratio at the onset of calf exercise.
    Cettolo V; Cautero M; Tam E; Francescato MP
    Eur J Appl Physiol; 2007 Apr; 99(6):593-604. PubMed ID: 17206437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rate of phosphocreatine hydrolysis and resynthesis in exercising muscle in humans using 31P-MRS.
    Yoshida T
    J Physiol Anthropol Appl Human Sci; 2002 Sep; 21(5):247-55. PubMed ID: 12491822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth-resolved surface coil MRS (DRESS)-localized dynamic (31) P-MRS of the exercising human gastrocnemius muscle at 7 T.
    Valkovič L; Chmelík M; Just Kukurová I; Jakubová M; Kipfelsberger MC; Krumpolec P; Tušek Jelenc M; Bogner W; Meyerspeer M; Ukropec J; Frollo I; Ukropcová B; Trattnig S; Krššák M
    NMR Biomed; 2014 Nov; 27(11):1346-52. PubMed ID: 25199902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of oxygen in determining phosphocreatine onset kinetics in exercising humans.
    Haseler LJ; Kindig CA; Richardson RS; Hogan MC
    J Physiol; 2004 Aug; 558(Pt 3):985-92. PubMed ID: 15169844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans.
    Forbes SC; Slade JM; Meyer RA
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1124-31. PubMed ID: 19088770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.