These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
857 related articles for article (PubMed ID: 10368392)
1. Influence of head position on the spatial representation of acoustic targets. Goossens HH; van Opstal AJ J Neurophysiol; 1999 Jun; 81(6):2720-36. PubMed ID: 10368392 [TBL] [Abstract][Full Text] [Related]
2. Dynamic sound localization during rapid eye-head gaze shifts. Vliegen J; Van Grootel TJ; Van Opstal AJ J Neurosci; 2004 Oct; 24(42):9291-302. PubMed ID: 15496665 [TBL] [Abstract][Full Text] [Related]
3. Absence of compensation for vestibular-evoked passive head rotations in human sound localization. Van Barneveld DC; Binkhorst F; Van Opstal AJ Eur J Neurosci; 2011 Oct; 34(7):1149-60. PubMed ID: 21895805 [TBL] [Abstract][Full Text] [Related]
4. Influence of static eye and head position on tone-evoked gaze shifts. Van Grootel TJ; Van Wanrooij MM; Van Opstal AJ J Neurosci; 2011 Nov; 31(48):17496-504. PubMed ID: 22131411 [TBL] [Abstract][Full Text] [Related]
6. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. Mullette-Gillman OA; Cohen YE; Groh JM J Neurophysiol; 2005 Oct; 94(4):2331-52. PubMed ID: 15843485 [TBL] [Abstract][Full Text] [Related]
7. The influence of static eye and head position on the ventriloquist effect. Van Barneveld DC; Van Wanrooij MM Eur J Neurosci; 2013 May; 37(9):1501-10. PubMed ID: 23463919 [TBL] [Abstract][Full Text] [Related]
8. Binaural weighting of pinna cues in human sound localization. Hofman M; Van Opstal J Exp Brain Res; 2003 Feb; 148(4):458-70. PubMed ID: 12582829 [TBL] [Abstract][Full Text] [Related]
9. Gaze orienting in dynamic visual double steps. Vliegen J; Van Grootel TJ; Van Opstal AJ J Neurophysiol; 2005 Dec; 94(6):4300-13. PubMed ID: 16107519 [TBL] [Abstract][Full Text] [Related]
10. Human sound-localization behaviour after multiple changes in eye position. Van Grootel TJ; Van Opstal AJ Eur J Neurosci; 2009 Jun; 29(11):2233-46. PubMed ID: 19490093 [TBL] [Abstract][Full Text] [Related]
11. Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus. Lee J; Groh JM J Neurophysiol; 2012 Jul; 108(1):227-42. PubMed ID: 22514295 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous comparison of two sound localization measures. Jones AE; Ruhland JL; Gai Y; Yin TC Hear Res; 2014 Nov; 317():33-40. PubMed ID: 25261773 [TBL] [Abstract][Full Text] [Related]
13. Auditory saccades from different eye positions in the monkey: implications for coordinate transformations. Metzger RR; Mullette-Gillman OA; Underhill AM; Cohen YE; Groh JM J Neurophysiol; 2004 Oct; 92(4):2622-7. PubMed ID: 15163672 [TBL] [Abstract][Full Text] [Related]
14. Spatial representation in body coordinates: evidence from errors in remembering positions of visual and auditory targets after active eye, head, and body movements. Kopinska A; Harris LR Can J Exp Psychol; 2003 Mar; 57(1):23-37. PubMed ID: 12674367 [TBL] [Abstract][Full Text] [Related]
15. Two-dimensional sound-localization behavior of early-blind humans. Zwiers MP; Van Opstal AJ; Cruysberg JR Exp Brain Res; 2001 Sep; 140(2):206-22. PubMed ID: 11521153 [TBL] [Abstract][Full Text] [Related]
16. A quantitative study of auditory-evoked saccadic eye movements in two dimensions. Frens MA; Van Opstal AJ Exp Brain Res; 1995; 107(1):103-17. PubMed ID: 8751068 [TBL] [Abstract][Full Text] [Related]