These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10369766)

  • 1. Effect of magnesium on cruciform extrusion in supercoiled DNA.
    Vologodskaia MY; Vologodskii AV
    J Mol Biol; 1999 Jun; 289(4):851-9. PubMed ID: 10369766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow cruciform transitions in palindromic DNA.
    Gellert M; O'Dea MH; Mizuuchi K
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5545-9. PubMed ID: 6577442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of global DNA topology on cruciform formation in supercoiled DNA.
    Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-range structural effects in supercoiled DNA: statistical thermodynamics reveals a correlation between calculated cooperative melting and contextual influence on cruciform extrusion.
    Schaeffer F; Yeramian E; Lilley DM
    Biopolymers; 1989 Aug; 28(8):1449-73. PubMed ID: 2752100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of cruciform extrusion in DNA by temperature-gradient gel electrophoresis.
    Víglasky V; Danko P; Adamcík J; Valle F; Dietler G
    Anal Biochem; 2005 Aug; 343(2):308-12. PubMed ID: 16004956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA palindromes adopt a methylation-resistant conformation that is consistent with DNA cruciform or hairpin formation in vivo.
    Allers T; Leach DR
    J Mol Biol; 1995 Sep; 252(1):70-85. PubMed ID: 7666435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Formation of cruciform structures in pAO3 plasmid DNA on increasing superhelical density].
    Paniutin IG; Liamichev VI; Liubchenko IuL
    Mol Biol (Mosk); 1983; 17(3):667-77. PubMed ID: 6308419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrusion of an imperfect palindrome to a cruciform in superhelical DNA: complete determination of energetics using a statistical mechanical model.
    Benham CJ; Savitt AG; Bauer WR
    J Mol Biol; 2002 Feb; 316(3):563-81. PubMed ID: 11866518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercalators: contra cruciform extrusion in DNA.
    Viglasky V; Danko P
    Anal Biochem; 2007 Jan; 360(1):7-13. PubMed ID: 17113025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A + T)-rich regions that promote low-salt cruciform extrusion.
    Bowater R; Aboul-ela F; Lilley DM
    Biochemistry; 1991 Dec; 30(49):11495-506. PubMed ID: 1747368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The selective binding of HMG1 to the cruciform DNA structure and the subsequent resumption of transcription.
    Waga S; Shirakawa H; Mizuno S; Yoshida M
    Nucleic Acids Symp Ser; 1990; (22):81-2. PubMed ID: 2101922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of chemical and enzymatic cleavage frequencies in supercoiled DNA.
    Tsen H; Levene SD
    J Mol Biol; 2004 Mar; 336(5):1087-102. PubMed ID: 15037071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative supercoiling and nucleosome cores. I. The effect of negative supercoiling on the efficiency of nucleosome core formation in vitro.
    Patterton HG; von Holt C
    J Mol Biol; 1993 Feb; 229(3):623-36. PubMed ID: 8433363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Visualization of the cruciform structure of superhelical DNA by use of atomic force microscopy].
    Limanskiĭ AP
    Biofizika; 2000; 45(6):1039-43. PubMed ID: 11155230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Length-dependent cruciform extrusion in d(GTAC)n sequences.
    Naylor LH; Yee HA; van de Sande JH
    J Biomol Struct Dyn; 1988 Feb; 5(4):895-912. PubMed ID: 3271495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA.
    Panyutin I; Klishko V; Lyamichev V
    J Biomol Struct Dyn; 1984 Jun; 1(6):1311-24. PubMed ID: 6400822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flanking AT-rich sequences may lower the activation energy of cruciform extrusion in supercoiled DNA.
    Wang Y; Sauerbier W
    Biochem Biophys Res Commun; 1989 Jan; 158(2):423-31. PubMed ID: 2537072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments.
    Gebe JA; Delrow JJ; Heath PJ; Fujimoto BS; Stewart DW; Schurr JM
    J Mol Biol; 1996 Sep; 262(2):105-28. PubMed ID: 8831783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercoiling-induced DNA bending.
    Pavlicek JW; Oussatcheva EA; Sinden RR; Potaman VN; Sankey OF; Lyubchenko YL
    Biochemistry; 2004 Aug; 43(33):10664-8. PubMed ID: 15311927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.