BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10369960)

  • 1. Comparison of ribosomal DNA ITS regions among geographic isolates of Cenococcum geophilum.
    Shinohara ML; LoBuglio KF; Rogers SO
    Curr Genet; 1999 Jun; 35(5):527-35. PubMed ID: 10369960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Group-I intron family in the nuclear ribosomal RNA small subunit genes of Cenococcum geophilum isolates.
    Shinohara ML; LoBuglio KF; Rogers SO
    Curr Genet; 1996 Mar; 29(4):377-87. PubMed ID: 8598059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Messenger RNA intron in the nuclear 18s ribosomal RNA gene of deuteromycetes.
    Rogers SO; Yan ZH; Shinohara M; LoBuglio KF; Wang CJ
    Curr Genet; 1993; 23(4):338-42. PubMed ID: 8467532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic origins of the asexual mycorrhizal symbiont Cenococcum geophilum Fr. and other mycorrhizal fungi among the ascomycetes.
    LoBuglio KF; Berbee ML; Taylor JW
    Mol Phylogenet Evol; 1996 Oct; 6(2):287-94. PubMed ID: 8899729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Group-I introns in 18S rDNA of Cenococcum geophilum Fr].
    Wang T; Chen L
    Wei Sheng Wu Xue Bao; 2012 Sep; 52(9):1059-68. PubMed ID: 23236839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant diversity and potential problems associated with inferring population structure within the Cenococcum geophilum species complex.
    Douhan GW; Huryn KL; Douhan LI
    Mycologia; 2007; 99(6):812-9. PubMed ID: 18333505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of rDNA ITS1 and ITS2 sequences and RNA secondary structures within members of the fungal genera Grosmannia and Leptographium.
    Mullineux T; Hausner G
    Fungal Genet Biol; 2009 Nov; 46(11):855-67. PubMed ID: 19665572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting phylogenetic diversity and cryptic species of Cenococcum geophilum sensu lato.
    Obase K; Douhan GW; Matsuda Y; Smith ME
    Mycorrhiza; 2016 Aug; 26(6):529-40. PubMed ID: 26968743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum.
    Douhan GW; Rizzo DM
    New Phytol; 2005 Apr; 166(1):263-71. PubMed ID: 15760369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic diversity of 200+ isolates of the ectomycorrhizal fungus Cenococcum geophilum associated with Populus trichocarpa soils in the Pacific Northwest, USA and comparison to globally distributed representatives.
    Vélez JM; Morris RM; Vilgalys R; Labbé J; Schadt CW
    PLoS One; 2021; 16(1):e0231367. PubMed ID: 33406078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. Three internal transcribed spacers and 12 group I intron insertion sites.
    Turmel M; Gutell RR; Mercier JP; Otis C; Lemieux C
    J Mol Biol; 1993 Jul; 232(2):446-67. PubMed ID: 8393936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the 5.8s rDNA and internal transcribed spacer sequences of isolates of Leptosphaeria maculans from different pathogenicity groups.
    Morales VM; Pelcher LE; Taylor JL
    Curr Genet; 1993; 23(5-6):490-5. PubMed ID: 8319307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in the ribosomal internal transcribed spacers (ITS1 and ITS2) among eight taxa of the Mimulus guttatus species complex.
    Ritland CE; Ritland K; Straus NA
    Mol Biol Evol; 1993 Nov; 10(6):1273-88. PubMed ID: 7904042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionarily conserved structural elements are critical for processing of Internal Transcribed Spacer 2 from Saccharomyces cerevisiae precursor ribosomal RNA.
    van Nues RW; Rientjes JM; Morré SA; Mollee E; Planta RJ; Venema J; Raué HA
    J Mol Biol; 1995 Jun; 250(1):24-36. PubMed ID: 7602595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA.
    Kusaba M; Tsuge T
    Curr Genet; 1995 Oct; 28(5):491-8. PubMed ID: 8575025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 28s rDNA group-I introns: a powerful tool for identifying strains of Beauveria brongniartii.
    Neuvéglise C; Brygoo Y; Riba G
    Mol Ecol; 1997 Apr; 6(4):373-81. PubMed ID: 9131812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exophiala dermatitidis and Sarcinomyces phaeomuriformis: ITS1-sequencing and nutritional physiology.
    Uijthof JM; Van Belkum A; De Hoog GS; Haase G
    Med Mycol; 1998 Jun; 36(3):143-51. PubMed ID: 9776827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the putative asexual fungus Cenococcum geophilum as a model to test how species concepts influence recombination analyses using sequence data from multiple loci.
    Douhan GW; Martin DP; Rizzo DM
    Curr Genet; 2007 Nov; 52(5-6):191-201. PubMed ID: 17768627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of evolution in Discula fungi and the origin of dogwood anthracnose in North America, studied using arbitrarily amplified and ribosomal DNA.
    Caetano-Anollés G; Trigiano RN; Windham MT
    Curr Genet; 2001 Jul; 39(5-6):346-54. PubMed ID: 11525409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCR-ribotyping of type isolates of currently accepted Exophiala and Phaeococcomyces species.
    Uijthof JM; de Hoog GS
    Antonie Van Leeuwenhoek; 1995 Jul; 68(1):35-42. PubMed ID: 8526479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.