These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 10370189)
1. Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Felt O; Furrer P; Mayer JM; Plazonnet B; Buri P; Gurny R Int J Pharm; 1999 Apr; 180(2):185-93. PubMed ID: 10370189 [TBL] [Abstract][Full Text] [Related]
2. Delivery of antibiotics to the eye using a positively charged polysaccharide as vehicle. Felt O; Baeyens V; Buri P; Gurny R AAPS PharmSci; 2001; 3(4):E34. PubMed ID: 12066799 [TBL] [Abstract][Full Text] [Related]
3. Chitosan as tear substitute: a wetting agent endowed with antimicrobial efficacy. Felt O; Carrel A; Baehni P; Buri P; Gurny R J Ocul Pharmacol Ther; 2000 Jun; 16(3):261-70. PubMed ID: 10872923 [TBL] [Abstract][Full Text] [Related]
4. Ocular contact time of a carbomer gel (GelTears) in humans. Wilson CG; Zhu YP; Frier M; Rao LS; Gilchrist P; Perkins AC Br J Ophthalmol; 1998 Oct; 82(10):1131-4. PubMed ID: 9924298 [TBL] [Abstract][Full Text] [Related]
5. Comparative studies of various hyaluronic acids produced by microbial fermentation for potential topical ophthalmic applications. Guillaumie F; Furrer P; Felt-Baeyens O; Fuhlendorff BL; Nymand S; Westh P; Gurny R; Schwach-Abdellaoui K J Biomed Mater Res A; 2010 Mar; 92(4):1421-30. PubMed ID: 19358259 [TBL] [Abstract][Full Text] [Related]
7. Assessment of the precorneal residence of an ophthalmic ointment in healthy subjects. Greaves JL; Wilson CG; Birmingham AT Br J Clin Pharmacol; 1993 Feb; 35(2):188-92. PubMed ID: 8443038 [TBL] [Abstract][Full Text] [Related]
8. Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Zhang J; Wang S Int J Pharm; 2009 May; 372(1-2):66-75. PubMed ID: 19437594 [TBL] [Abstract][Full Text] [Related]
9. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery. Gupta H; Velpandian T; Jain S J Drug Target; 2010 Aug; 18(7):499-505. PubMed ID: 20055752 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticles laden in situ gel of levofloxacin for enhanced ocular retention. Gupta H; Aqil M; Khar RK; Ali A; Bhatnagar A; Mittal G Drug Deliv; 2013; 20(7):306-9. PubMed ID: 24044648 [TBL] [Abstract][Full Text] [Related]
11. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. Wei G; Xu H; Ding PT; Li SM; Zheng JM J Control Release; 2002 Sep; 83(1):65-74. PubMed ID: 12220839 [TBL] [Abstract][Full Text] [Related]
12. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Soane RJ; Hinchcliffe M; Davis SS; Illum L Int J Pharm; 2001 Apr; 217(1-2):183-91. PubMed ID: 11292554 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional properties of organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides for ocular drug delivery. Xu T; Zhang J; Chi H; Cao F Acta Biomater; 2016 May; 36():152-63. PubMed ID: 26940970 [TBL] [Abstract][Full Text] [Related]
14. Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: In-vitro characterization, ocular tolerance and antibacterial activity. Ameeduzzafar ; Imam SS; Abbas Bukhari SN; Ahmad J; Ali A Int J Biol Macromol; 2018 Mar; 108():650-659. PubMed ID: 29199125 [TBL] [Abstract][Full Text] [Related]
15. Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin. Di Colo G; Zambito Y; Burgalassi S; Nardini I; Saettone MF Int J Pharm; 2004 Apr; 273(1-2):37-44. PubMed ID: 15010128 [TBL] [Abstract][Full Text] [Related]
16. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Gratieri T; Gelfuso GM; de Freitas O; Rocha EM; Lopez RF Eur J Pharm Biopharm; 2011 Oct; 79(2):320-7. PubMed ID: 21641994 [TBL] [Abstract][Full Text] [Related]
17. Scintigraphic assessment of an ophthalmic gelling vehicle in man and rabbit. Greaves JL; Wilson CG; Rozier A; Grove J; Plazonnet B Curr Eye Res; 1990 May; 9(5):415-20. PubMed ID: 2166636 [TBL] [Abstract][Full Text] [Related]
18. A comparative study on the efficiency of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan surface modified nanostructured lipid carrier for ophthalmic delivery of curcumin. Li J; Liu D; Tan G; Zhao Z; Yang X; Pan W Carbohydr Polym; 2016 Aug; 146():435-44. PubMed ID: 27112894 [TBL] [Abstract][Full Text] [Related]
19. In vivo eye surface residence determination by high-resolution scintigraphy of a novel ion-sensitive hydrogel based on gellan gum and kappa-carrageenan. Fernández-Ferreiro A; Silva-Rodríguez J; Otero-Espinar FJ; González-Barcia M; Lamas MJ; Ruibal A; Luaces-Rodríguez A; Vieites-Prado A; Lema I; Herranz M; Gómez-Lado N; Blanco-Mendez J; Gil-Martínez M; Pardo M; Moscoso A; Cortes J; Sánchez-Martínez M; Pardo-Montero J; Aguiar P Eur J Pharm Biopharm; 2017 May; 114():317-323. PubMed ID: 28189624 [TBL] [Abstract][Full Text] [Related]
20. Transport mechanism of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan decorated coumarin-6 loaded nanostructured lipid carriers across the rabbit ocular. Li J; Tan G; Cheng B; Liu D; Pan W Eur J Pharm Biopharm; 2017 Nov; 120():89-97. PubMed ID: 28867370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]