These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10371020)

  • 1. Reaction-diffusion microtubule concentration patterns occur during biological morphogenesis.
    Papaseit C; Vuillard L; Tabony J
    Biophys Chem; 1999 May; 79(1):33-9. PubMed ID: 10371020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles.
    Glade N; Demongeot J; Tabony J
    BMC Cell Biol; 2004 Jun; 5():23. PubMed ID: 15176973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulations of microtubule self-organisation by reaction and diffusion.
    Glade N; Demongeot J; Tabony J
    Acta Biotheor; 2002; 50(4):239-68. PubMed ID: 12675530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of reaction-diffusion simulations with experiment in self-organised microtubule solutions.
    Glade N; Demongeot J; Tabony J
    C R Biol; 2002 Apr; 325(4):283-94. PubMed ID: 12161908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule self-organisation and its gravity dependence.
    Tabony J; Glade N; Papaseit C; Demongeot J
    Adv Space Biol Med; 2002; 8():19-58. PubMed ID: 12951692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological bifurcations involving reaction-diffusion processes during microtubule formation.
    Tabony J
    Science; 1994 Apr; 264(5156):245-8. PubMed ID: 8146654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule self-organisation by reaction-diffusion processes in miniature cell-sized containers and phospholipid vesicles.
    Cortès S; Glade N; Chartier I; Tabony J
    Biophys Chem; 2006 Apr; 120(3):168-77. PubMed ID: 16337731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brief exposure to high magnetic fields determines microtubule self-organisation by reaction-diffusion processes.
    Glade N; Tabony J
    Biophys Chem; 2005 May; 115(1):29-35. PubMed ID: 15848281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple plasma membrane-associated MTOC systems in the acentrosomal cone cells of Drosophila ommatidia.
    Mogensen MM; Tucker JB; Baggaley TB
    Eur J Cell Biol; 1993 Feb; 60(1):67-75. PubMed ID: 8462602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravity dependence of microtubule preparations.
    Tabony J; Glade N; Papaseit C; Demongeot J
    J Gravit Physiol; 2002 Jul; 9(1):P245-8. PubMed ID: 15002567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinodal decomposition and the emergence of dissipative transient periodic spatio-temporal patterns in acentrosomal microtubule multitudes of different morphology.
    Buljan VA; Holsinger RM; Brown D; Bohorquez-Florez JJ; Hambly BD; Delikatny EJ; Ivanova EP; Banati RB
    Chaos; 2013 Jun; 23(2):023120. PubMed ID: 23822485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Drosophila pair-rule pattern by reaction-diffusion: gap input and pattern control in a 4-morphogen system.
    Lacalli TC
    J Theor Biol; 1990 May; 144(2):171-94. PubMed ID: 2197508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule assembly in cytoplasmic extracts of Xenopus oocytes and eggs.
    Gard DL; Kirschner MW
    J Cell Biol; 1987 Nov; 105(5):2191-201. PubMed ID: 3680377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule cycles in oocytes of the surf clam, Spisula solidissima: an immunofluorescence study.
    Kuriyama R; Borisy GG; Masui Y
    Dev Biol; 1986 Mar; 114(1):151-60. PubMed ID: 3514316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bicoid mRNA diffusion as a mechanism of morphogenesis in Drosophila early development.
    Dilão R
    C R Biol; 2014 Dec; 337(12):679-82. PubMed ID: 25433559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the nature and shape of tubulin trails: implications on microtubule self-organization.
    Glade N
    Acta Biotheor; 2012 Jun; 60(1-2):55-82. PubMed ID: 22331498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. spn-F encodes a novel protein that affects oocyte patterning and bristle morphology in Drosophila.
    Abdu U; Bar D; Schüpbach T
    Development; 2006 Apr; 133(8):1477-84. PubMed ID: 16540510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs.
    Schatten H; Schatten G; Mazia D; Balczon R; Simerly C
    Proc Natl Acad Sci U S A; 1986 Jan; 83(1):105-9. PubMed ID: 2417231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes.
    Rebollo E; Llamazares S; Reina J; Gonzalez C
    PLoS Biol; 2004 Jan; 2(1):E8. PubMed ID: 14758368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila.
    Micklem DR; Dasgupta R; Elliott H; Gergely F; Davidson C; Brand A; González-Reyes A; St Johnston D
    Curr Biol; 1997 Jul; 7(7):468-78. PubMed ID: 9210377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.