These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 10371039)

  • 1. Function, mechanism and regulation of bacterial ribonucleases.
    Nicholson AW
    FEMS Microbiol Rev; 1999 Jun; 23(3):371-90. PubMed ID: 10371039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How bacterial cells keep ribonucleases under control.
    Deutscher MP
    FEMS Microbiol Rev; 2015 May; 39(3):350-61. PubMed ID: 25878039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CsrA Participates in a PNPase Autoregulatory Mechanism by Selectively Repressing Translation of pnp Transcripts That Have Been Previously Processed by RNase III and PNPase.
    Park H; Yakhnin H; Connolly M; Romeo T; Babitzke P
    J Bacteriol; 2015 Dec; 197(24):3751-9. PubMed ID: 26438818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation and functions of bacterial PNPase.
    Briani F; Carzaniga T; Dehò G
    Wiley Interdiscip Rev RNA; 2016; 7(2):241-58. PubMed ID: 26750178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleolytic inactivation and degradation of the RNase III processed pnp message encoding polynucleotide phosphorylase of Escherichia coli.
    Hajnsdorf E; Carpousis AJ; Régnier P
    J Mol Biol; 1994 Jun; 239(4):439-54. PubMed ID: 7516438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of the β-CASP ribonucleases: highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation.
    Dominski Z; Carpousis AJ; Clouet-d'Orval B
    Biochim Biophys Acta; 2013; 1829(6-7):532-51. PubMed ID: 23403287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNase III-Independent Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase via Translational Repression.
    Carzaniga T; Dehò G; Briani F
    J Bacteriol; 2015 Jun; 197(11):1931-8. PubMed ID: 25825432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Messenger RNA degradation in bacterial cells.
    Hui MP; Foley PL; Belasco JG
    Annu Rev Genet; 2014; 48():537-59. PubMed ID: 25292357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Bacterial Ribonucleases.
    Deutscher MP
    Annu Rev Microbiol; 2021 Oct; 75():71-86. PubMed ID: 34081529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome.
    Górna MW; Carpousis AJ; Luisi BF
    Q Rev Biophys; 2012 May; 45(2):105-45. PubMed ID: 22169164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of an RNA internal loop as a reactivity epitope for Escherichia coli ribonuclease III substrates.
    Calin-Jageman I; Nicholson AW
    Biochemistry; 2003 May; 42(17):5025-34. PubMed ID: 12718545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader.
    Jarrige AC; Mathy N; Portier C
    EMBO J; 2001 Dec; 20(23):6845-55. PubMed ID: 11726520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both exo- and endo-nucleolytic activities of RNase J1 from Staphylococcus aureus are manganese dependent and active on triphosphorylated 5'-ends.
    Hausmann S; Guimarães VA; Garcin D; Baumann N; Linder P; Redder P
    RNA Biol; 2017 Oct; 14(10):1431-1443. PubMed ID: 28277929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis.
    Sun W; Pertzev A; Nicholson AW
    Nucleic Acids Res; 2005; 33(3):807-15. PubMed ID: 15699182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phylogenetic distribution of bacterial ribonucleases.
    Condon C; Putzer H
    Nucleic Acids Res; 2002 Dec; 30(24):5339-46. PubMed ID: 12490701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The multifaceted roles of the RNA processing enzyme ribonuclease III.
    Srivastava RA; Srivastava N
    Indian J Biochem Biophys; 1996 Aug; 33(4):253-60. PubMed ID: 8936814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome-wide analyses of 5'-ends in RNase J mutants of a gram-positive pathogen reveal a role in RNA maturation, regulation and degradation.
    Linder P; Lemeille S; Redder P
    PLoS Genet; 2014 Feb; 10(2):e1004207. PubMed ID: 24586213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity.
    Kim KS; Manasherob R; Cohen SN
    Genes Dev; 2008 Dec; 22(24):3497-508. PubMed ID: 19141481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets.
    Cameron TA; De Lay NR
    J Bacteriol; 2016 Dec; 198(24):3309-3317. PubMed ID: 27698082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and genetic interactions of the RNA degradation machineries in Firmicute bacteria.
    Redder P
    Wiley Interdiscip Rev RNA; 2018 Mar; 9(2):. PubMed ID: 29314657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.