These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10371218)

  • 41. Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart.
    Kang PT; Chen CL; Lin P; Chilian WM; Chen YR
    Basic Res Cardiol; 2017 Jul; 112(4):36. PubMed ID: 28508960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonezymatic formation of succinate in mitochondria under oxidative stress.
    Fedotcheva NI; Sokolov AP; Kondrashova MN
    Free Radic Biol Med; 2006 Jul; 41(1):56-64. PubMed ID: 16781453
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Moderate dependence of ROS formation on DeltaPsim in isolated brain mitochondria supported by NADH-linked substrates.
    Tretter L; Adam-Vizi V
    Neurochem Res; 2007; 32(4-5):569-75. PubMed ID: 16933091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolated respiring heart mitochondria release reactive oxygen species in states 4 and 3.
    Saborido A; Soblechero L; Megías A
    Free Radic Res; 2005 Sep; 39(9):921-31. PubMed ID: 16087473
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of partial inhibition of respiratory complex I on H2O 2 production by isolated brain mitochondria in different respiratory states.
    Michelini LG; Benevento CE; Rossato FA; Siqueira-Santos ES; Castilho RF
    Neurochem Res; 2014 Dec; 39(12):2419-30. PubMed ID: 25287903
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Specificity of the Organic Acid Activation of Alternative Oxidase in Plant Mitochondria.
    Millar AH; Hoefnagel M; Day DA; Wiskich JT
    Plant Physiol; 1996 Jun; 111(2):613-618. PubMed ID: 12226315
    [TBL] [Abstract][Full Text] [Related]  

  • 47. H2O2 generation is decreased by calcium in isolated brain mitochondria.
    Komary Z; Tretter L; Adam-Vizi V
    Biochim Biophys Acta; 2008; 1777(7-8):800-7. PubMed ID: 18522799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ; Clark JB; Williamson JR
    Biochem J; 1971 Jun; 123(1):83-95. PubMed ID: 5128666
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Succinate-dependent energy generation in Ascaris suum mitochondria.
    Campbell T; Rubin N; Komuniecki R
    Mol Biochem Parasitol; 1989 Feb; 33(1):1-12. PubMed ID: 2710162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Respiration and ROS production in brain and spinal cord mitochondria of transgenic rats with mutant G93a Cu/Zn-superoxide dismutase gene.
    Panov A; Kubalik N; Zinchenko N; Hemendinger R; Dikalov S; Bonkovsky HL
    Neurobiol Dis; 2011 Oct; 44(1):53-62. PubMed ID: 21745570
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of resveratrol on the rat brain respiratory chain.
    Zini R; Morin C; Bertelli A; Bertelli AA; Tillement JP
    Drugs Exp Clin Res; 1999; 25(2-3):87-97. PubMed ID: 10370869
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membrane potential and H2O2 production in duodenal mitochondria from broiler chickens (Gallus gallus domesticus) with low and high feed efficiency.
    Ojano-Dirain C; Tinsley NB; Wing T; Cooper M; Bottje WG
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):934-41. PubMed ID: 17409002
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reactive oxygen species in programmed death of pea guard cells.
    Samuilov VD; Kiselevsky DB; Shestak AA; Nesov AV; Vasil'ev LA
    Biochemistry (Mosc); 2008 Oct; 73(10):1076-84. PubMed ID: 18991553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria.
    Han D; Canali R; Rettori D; Kaplowitz N
    Mol Pharmacol; 2003 Nov; 64(5):1136-44. PubMed ID: 14573763
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitric oxide degradation by potato tuber mitochondria: evidence for the involvement of external NAD(P)H dehydrogenases.
    de Oliveira HC; Wulff A; Saviani EE; Salgado I
    Biochim Biophys Acta; 2008 May; 1777(5):470-6. PubMed ID: 18371295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport.
    Schönfeld P; Wojtczak L
    Biochim Biophys Acta; 2007 Aug; 1767(8):1032-40. PubMed ID: 17588527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aging, cytochrome oxidase activity, and hydrogen peroxide release by mitochondria.
    Sohal RS
    Free Radic Biol Med; 1993 Jun; 14(6):583-8. PubMed ID: 8392019
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake.
    Gill RM; O'Brien M; Young A; Gardiner D; Mailloux RJ
    PLoS One; 2018; 13(2):e0192801. PubMed ID: 29444156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrogen peroxide production in uncoupled mitochondria of the parasitic nematode worm Nippostrongylus brasiliensis.
    Paget TA; Fry M; Lloyd D
    Biochem J; 1987 Apr; 243(2):589-95. PubMed ID: 3632636
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reactive oxygen species produced by liver mitochondria of rats in sepsis.
    Taylor DE; Ghio AJ; Piantadosi CA
    Arch Biochem Biophys; 1995 Jan; 316(1):70-6. PubMed ID: 7840680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.