These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 10372)

  • 1. The flow properties of microcrystalline cellulose powders.
    Marshall K; Sixsmith D
    J Pharm Pharmacol; 1976 Oct; 28(10):770-1. PubMed ID: 10372
    [No Abstract]   [Full Text] [Related]  

  • 2. Compaction simulator studies of a new drug substance: effect of particle size and shape, and its binary mixtures with microcrystalline cellulose.
    Celik M; Ong JT; Chowhan ZT; Samuel GJ
    Pharm Dev Technol; 1996 Jul; 1(2):119-26. PubMed ID: 9552338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of two commercial brands of microcrystalline cellulose for extrusion-spheronization.
    Law MF; Deasy PB; McLaughlin JP; Gabriel S
    J Microencapsul; 1997; 14(6):713-23. PubMed ID: 9394252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of compression on some physical properties of microcrystalline cellulose powders.
    Sixsmith D
    J Pharm Pharmacol; 1977 Jan; 29(1):33-6. PubMed ID: 13179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of processing and polymorphic form effect on the powder and tableting properties of microcrystalline celluloses I and II.
    Rojas J; López A; Gamboa Y; González C; Montoya F
    Chem Pharm Bull (Tokyo); 2011; 59(5):603-7. PubMed ID: 21532198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The compression characteristics of microcrystalline cellulose powders.
    Sixsmith D
    J Pharm Pharmacol; 1982 May; 34(5):345-6. PubMed ID: 6123582
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of mechanical dry coating with magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders.
    Koskela J; Morton DAV; Stewart PJ; Juppo AM; Lakio S
    Int J Pharm; 2018 Feb; 537(1-2):64-72. PubMed ID: 29198809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of particle size and density on the die fill of powders.
    Mills LA; Sinka IC
    Eur J Pharm Biopharm; 2013 Aug; 84(3):642-52. PubMed ID: 23403013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profoundly improving flow properties of a cohesive cellulose powder by surface coating with nano-silica through comilling.
    Chattoraj S; Shi L; Sun CC
    J Pharm Sci; 2011 Nov; 100(11):4943-52. PubMed ID: 21698602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation into the impact of sub-populations of agglomerates on the particle size distribution and flow properties of conventional microcrystalline cellulose grades.
    Gamble JF; Chiu WS; Tobyn M
    Pharm Dev Technol; 2011 Oct; 16(5):542-8. PubMed ID: 20565228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying effects of particulate properties on powder flow properties using a ring shear tester.
    Hou H; Sun CC
    J Pharm Sci; 2008 Sep; 97(9):4030-9. PubMed ID: 18228607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change of the microstructure of microcrystalline cellulose with grinding and compression.
    Yamamura S; Terada K; Momose Y
    J Pharm Pharmacol; 1997 Dec; 49(12):1178-81. PubMed ID: 9466339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-formulation studies on moisture absorption in microcrystalline cellulose using differential thermo-gravimetric analysis.
    Heng PW; Liew CV; Soh JL
    Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):384-90. PubMed ID: 15056948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose.
    De Figueiredo LP; Ferreira FF
    J Pharm Sci; 2014 May; 103(5):1394-9. PubMed ID: 24590572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of microcrystalline cellulose based comilled powder on the compression and dissolution of ibuprofen.
    Mallick S; Pradhan SK; Mohapatra R
    Int J Biol Macromol; 2013 Sep; 60():148-55. PubMed ID: 23732329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of particle size and cohesive properties on mixing studied by non-contact NIR.
    Bellamy LJ; Nordon A; Littlejohn D
    Int J Pharm; 2008 Sep; 361(1-2):87-91. PubMed ID: 18577436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the degree of polymerization on the behavior of cellulose during homogenization and extrusion/spheronization.
    Kleinebudde P; Jumaa M; El Saleh F
    AAPS PharmSci; 2000; 2(3):E21. PubMed ID: 11741237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of particle properties of powders on the generation and transmission of Raman scattering.
    Townshend N; Nordon A; Littlejohn D; Andrews J; Dallin P
    Anal Chem; 2012 Jun; 84(11):4665-70. PubMed ID: 22533300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. True density of microcrystalline cellulose.
    Sun CC
    J Pharm Sci; 2005 Oct; 94(10):2132-4. PubMed ID: 16136576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles.
    Amin MC; Abadi AG; Katas H
    Carbohydr Polym; 2014 Jan; 99():180-9. PubMed ID: 24274495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.