These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 10372)

  • 21. [Physicochemical stability of ground mixtures of pharmaceutical products and microcrystalline cellulose].
    Kawano K; Nakai Y
    Yakugaku Zasshi; 1983 Oct; 103(10):1060-7. PubMed ID: 6674486
    [No Abstract]   [Full Text] [Related]  

  • 22. The effect of lactose particle size on the extrusion properties of microcrystalline cellulose-lactose mixtures.
    Fielden KE; Newton JM; Rowe RC
    J Pharm Pharmacol; 1989 Apr; 41(4):217-21. PubMed ID: 2568458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on tablets. XX. Further knowledge of powdered and microcrystalline cellulose].
    Heliová M; Chalabala M; Malý J
    Cesk Farm; 1972 Jul; 21(6):261-6. PubMed ID: 5068872
    [No Abstract]   [Full Text] [Related]  

  • 24. Use of powdered cellulose for the production of pellets by extrusion/spheronization.
    Lindner H; Kleinebudde P
    J Pharm Pharmacol; 1994 Jan; 46(1):2-7. PubMed ID: 8201523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of directly compactible layer-by-layer nanocoated cellulose.
    Strydom SJ; Otto DP; Liebenberg W; Lvov YM; de Villiers MM
    Int J Pharm; 2011 Feb; 404(1-2):57-65. PubMed ID: 21056645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of rapidly disintegrating tablet using new types of microcrystalline cellulose (PH-M series) and low substituted-hydroxypropylcellulose or spherical sugar granules by direct compression method.
    Ishikawa T; Mukai B; Shiraishi S; Utoguchi N; Fujii M; Matsumoto M; Watanabe Y
    Chem Pharm Bull (Tokyo); 2001 Feb; 49(2):134-9. PubMed ID: 11217097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inverse gas chromatography: considerations about appropriate use for amorphous and crystalline powders.
    Planinsek O; Buckton G
    J Pharm Sci; 2003 Jun; 92(6):1286-94. PubMed ID: 12761817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of microcrystalline cellulose and powder cellulose after extrusion/spheronization as studied by fourier transform Raman spectroscopy and environmental scanning electron microscopy.
    Fechner PM; Wartewig S; Füting M; Heilmann A; Neubert RH; Kleinebudde P
    AAPS PharmSci; 2003 Nov; 5(4):E31. PubMed ID: 15198519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Correlations between micromeritic properties of mixing powders of danshen extract and formability of their pellets].
    Xtong ZW; Luo Y; Liao ZG; Zhao GW; Li Z; Luo J
    Zhongguo Zhong Yao Za Zhi; 2014 Nov; 39(22):4317-23. PubMed ID: 25850259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the mechanism of colloidal silica action to improve flow properties of pharmaceutical excipients.
    Tran DT; Majerová D; Veselý M; Kulaviak L; Ruzicka MC; Zámostný P
    Int J Pharm; 2019 Feb; 556():383-394. PubMed ID: 30529657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural changes in microcrystalline cellulose in subcritical water treatment.
    Tolonen LK; Zuckerstätter G; Penttilä PA; Milacher W; Habicht W; Serimaa R; Kruse A; Sixta H
    Biomacromolecules; 2011 Jul; 12(7):2544-51. PubMed ID: 21644577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid state stability of acetylsalicylic acid in binary mixtures with microcrystalline and microfine cellulose.
    Ahlneck C; Alderborn G
    Acta Pharm Suec; 1988; 25(1):41-52. PubMed ID: 3414383
    [No Abstract]   [Full Text] [Related]  

  • 33. An experimental investigation of temperature rise during compaction of pharmaceutical powders.
    Krok A; Mirtic A; Reynolds GK; Schiano S; Roberts R; Wu CY
    Int J Pharm; 2016 Nov; 513(1-2):97-108. PubMed ID: 27601333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nondestructive measurements of the compact strength and the particle-size distribution after milling of roller compacted powders by near-infrared spectroscopy.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2004 Apr; 93(4):1047-53. PubMed ID: 14999740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of microcrystalline cellulose grade on shape and shape distributions of pellets produced by extrusion-spheronization.
    Koo OM; Heng PW
    Chem Pharm Bull (Tokyo); 2001 Nov; 49(11):1383-7. PubMed ID: 11724226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of applied load and particle size on the plastoelasticity and tablet strength of some directly compressible powders.
    Esezobo S; Pilpel N
    J Pharm Pharmacol; 1987 Apr; 39(4):303-4. PubMed ID: 2884296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a novel approach towards predicting the milling behaviour of pharmaceutical powders.
    Kwan CC; Chen YQ; Ding YL; Papadopoulos DG; Bentham AC; Ghadiri M
    Eur J Pharm Sci; 2004 Dec; 23(4-5):327-36. PubMed ID: 15567285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method.
    Horio T; Yasuda M; Matsusaka S
    Int J Pharm; 2014 Oct; 473(1-2):572-8. PubMed ID: 25079435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients.
    de la Luz Reus Medina M; Kumar V
    Int J Pharm; 2007 Jun; 337(1-2):202-9. PubMed ID: 17376616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization.
    Shlieout G; Arnold K; Müller G
    AAPS PharmSciTech; 2002; 3(2):E11. PubMed ID: 12916948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.