BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10372145)

  • 1. Monitoring temperature-induced changes in tissue during hyperthermia by impedance methods.
    Gersing E
    Ann N Y Acad Sci; 1999 Apr; 873():13-20. PubMed ID: 10372145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Problems involved in temperature measurements using EIT.
    Gersing E; Krüger W; Osypka M; Vaupel P
    Physiol Meas; 1995 Aug; 16(3 Suppl A):A153-60. PubMed ID: 8528114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia.
    Blad B; Persson B; Lindström K
    Int J Hyperthermia; 1992; 8(1):33-43. PubMed ID: 1545162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of hyperthermia-induced tissue conductivity changes on electrical impedance temperature mapping.
    Esrick MA; McRae DA
    Phys Med Biol; 1994 Jan; 39(1):133-44. PubMed ID: 7651992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumour tissue monitoring during photodynamic and hyperthermic treatment using bioimpedance spectroscopy.
    Gersing E; Kelleher DK; Vaupel P
    Physiol Meas; 2003 May; 24(2):625-37. PubMed ID: 12812443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical impedance tomography for thermal monitoring of hyperthermia treatment: an assessment using in vitro and in vivo measurements.
    Conway J
    Clin Phys Physiol Meas; 1987; 8 Suppl A():141-6. PubMed ID: 3568563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical implementation of electrical impedance tomography with hyperthermia.
    Moskowitz MJ; Ryan TP; Paulsen KD; Mitchell SE
    Int J Hyperthermia; 1995; 11(2):141-9. PubMed ID: 7790730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an electrical impedance tomography system for noninvasive temperature monitoring of hyperthermia treatments.
    Blad B; Bertenstam L; Persson BR
    Adv Exp Med Biol; 1990; 267():235-43. PubMed ID: 2088041
    [No Abstract]   [Full Text] [Related]  

  • 9. Quantitative assessment of impedance tomography for temperature measurements in microwave hyperthermia.
    Amasha HM; Anderson AP; Conway J; Barber DC
    Clin Phys Physiol Meas; 1988; 9 Suppl A():49-53. PubMed ID: 3240649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental assessment of electrical impedance imaging for hyperthermia monitoring.
    Conway J; Hawley M; Mangnall Y; Amasha H; van Rhoon GC
    Clin Phys Physiol Meas; 1992; 13 Suppl A():185-9. PubMed ID: 1587098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of segmental intra- and extracellular volume changes using electrical impedance spectroscopy.
    Sasser DC; Gerth WA; Wu YC
    J Appl Physiol (1985); 1993 May; 74(5):2180-7. PubMed ID: 8335546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in electrical impedance of skeletal muscle measured during hyperthermia.
    McRae DA; Esrick MA
    Int J Hyperthermia; 1993; 9(2):247-61. PubMed ID: 8468508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of tissue impedivity in electrical impedance tomography of cryosurgery.
    Edd JF; Horowitz L; Rubinsky B
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):695-701. PubMed ID: 15825871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical applications of electrical impedance tomography.
    Dijkstra AM; Brown BH; Leathard AD; Harris ND; Barber DC; Edbrooke DL
    J Med Eng Technol; 1993; 17(3):89-98. PubMed ID: 8263905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility study of monitoring temperature rise in muscle phantoms by the Electrical Impedance Tomography system during hyperthermia treatment.
    Woo H; Kim Y; Guy A
    J Microw Power Electromagn Energy; 1990; 25(4):241-9. PubMed ID: 2074526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue impedance spectra and the appropriate frequencies for EIT.
    Osypka M; Gersing E
    Physiol Meas; 1995 Aug; 16(3 Suppl A):A49-55. PubMed ID: 8528126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic study of new diagnostic modality according to non-invasive measurement of the electrical conductivity of tissues.
    Ohmine Y; Morimoto T; Kinouchi Y; Iritani T; Takeuchi M; Haku M; Nishitani H
    J Med Invest; 2004 Aug; 51(3-4):218-25. PubMed ID: 15460909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time conductivity imaging of temperature and tissue property changes during radiofrequency ablation: an ex vivo model using weighted frequency difference.
    Wi H; McEwan AL; Lam V; Kim HJ; Woo EJ; Oh TI
    Bioelectromagnetics; 2015 Apr; 36(4):277-86. PubMed ID: 25779916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryosurgical monitoring using bioimpedance measurements--a feasibility study for electrical impedance tomography.
    Otten DM; Rubinsky B
    IEEE Trans Biomed Eng; 2000 Oct; 47(10):1376-81. PubMed ID: 11059172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.