These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10372161)

  • 1. Lead field theoretical approach in bioimpedance measurements: towards more controlled measurement sensitivity.
    Kauppinen PK; Hyttinen JA; Kööbi T; Malmivuo J
    Ann N Y Acad Sci; 1999 Apr; 873():135-42. PubMed ID: 10372161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of computer modelling and lead field theory in developing multiple aimed impedance cardiography measurements.
    Kauppinen P; Kööbi T; Kaukinen S; Hyttinen J; Malmivuo J
    J Med Eng Technol; 1999; 23(5):169-77. PubMed ID: 10627950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model.
    Kauppinen PK; Hyttinen JA; Malmivuo JA
    Ann Biomed Eng; 1998; 26(4):694-702. PubMed ID: 9662161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-channel bioimpedance monitor for impedance cardiography.
    Vondra V; Halamek J; Viscor I; Jurak P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6061-3. PubMed ID: 17945930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal tissue types in the thoracic electrical impedance model for thoracic electrical bioimpedance (TEB) studies.
    Akhand M; Trakic A; Terril P; Liu F; Wilson S; Crozier S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3913-6. PubMed ID: 19964319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilead measurement system for the time-domain analysis of bioimpedance magnitude.
    Gracia J; Seppa VP; Viik J; Hyttinen J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2273-80. PubMed ID: 22692863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram.
    Trakic A; Akhand M; Wang H; Mason D; Liu F; Wilson S; Crozier S
    Physiol Meas; 2010 Jan; 31(1):13-33. PubMed ID: 19940342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heart rate detection from plantar bioimpedance measurements.
    González Landaeta R; Casas O; Pallàs-Areny R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5113-6. PubMed ID: 17946677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a wearable multi-frequency impedance cardiography device.
    Weyer S; Menden T; Leicht L; Leonhardt S; Wartzek T
    J Med Eng Technol; 2015 Feb; 39(2):131-7. PubMed ID: 25559781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the formation for thoracic impedance change.
    Kuang MX; Xiao QJ; Cui CY; Kuang NZ; Hong WQ; Hu AR
    Ann Biomed Eng; 2010 Mar; 38(3):1007-16. PubMed ID: 20336823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Electrode Locations for Joint Acquisition of Impedance- and Electro-cardiography Signals.
    Metshein M; Gautier A; Larras B; Frappe A; John D; Cardiff B; Annus P; Land R; Martens O
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7264. PubMed ID: 34892775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Thorax Simulator for Complex Dynamic Bioimpedance Measurements With Textile Electrodes.
    Ulbrich M; Muhlsteff J; Teichmann D; Leonhardt S; Walter M
    IEEE Trans Biomed Circuits Syst; 2015 Jun; 9(3):412-20. PubMed ID: 25148671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of thoracic blood volume changes during the heart cycle with electrical impedance using a linear spot-electrode array.
    Hoetink AE; Faes TJ; Marcus JT; Kerkkamp HJ; Heethaar RM
    IEEE Trans Med Imaging; 2002 Jun; 21(6):653-61. PubMed ID: 12166862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Impedance cardiography--non-invasive measurement of central hemodynamic data].
    Petersen JR; Jensen BV; Olsen F
    Ugeskr Laeger; 1992 Jan; 154(5):255-60. PubMed ID: 1736457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of fiber orientation on volume measurement using conductance catheter techniques.
    Thaijiam C; Gale TJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5981-4. PubMed ID: 17947175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography.
    Wang Y; Haynor DR; Kim Y
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1390-401. PubMed ID: 11759920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
    Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS
    Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full Impedance Cardiography measurement device using Raspberry PI3 and System-on-Chip biomedical Instrumentation Solutions.
    Hafid A; Benouar S; Kedir-Talha M; Abtahi F; Attari M; Seoane F
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1883-1894. PubMed ID: 29990025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement artefact rejection in impedance pneumography using six strategically placed electrodes.
    Khambete ND; Brown BH; Smallwood RH
    Physiol Meas; 2000 Feb; 21(1):79-88. PubMed ID: 10720002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addition of internal electrodes is beneficial for focused bioimpedance measurements in the lung.
    Orschulik J; Hochhausen N; Czaplik M; Teichmann D; Leonhardt S; Walter M
    Physiol Meas; 2018 Mar; 39(3):035009. PubMed ID: 29406309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.